Tìm x\(\in\)Z ; biết :
\(\left|x-1\right|+\left|x-3\right|=6\)
Tìm \(x\in Z\) để \(B=\dfrac{x-2}{\sqrt{x}-3}\in Z\)
B nguyên
=>x-9+7 chia hết cho căn x-3
=>căn x-3 thuộc {1;-1;7}
=>x thuộc {16;4;100}
1.tìm \(x\in Z\) sao cho \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
1.tìm \(x\in Z\) sao cho \(\dfrac{x-1}{x+5}\) là 1 số nguyên
1.tìm \(x,y\in Z\) sao cho \(\left(x-1\right).\left(y-3\right)=7\) là 1 số nguyên
325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
tìm x\(\in Z\) để \(\dfrac{3}{\sqrt{x}-4}\in Z\)
\(\dfrac{3}{\sqrt{x}-4}\in Z\Leftrightarrow3⋮\sqrt{x}-4\\ \Leftrightarrow\sqrt{x}-4\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\)
ĐK: \(x\ge0;x\ne16\)
\(\dfrac{3}{\sqrt{x}-4}\in Z\)
\(\Leftrightarrow\sqrt{x}-4\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\inƯ_3=\left\{1;3;5;7\right\}\)
\(\Leftrightarrow x\inƯ_3=\left\{1;9;25;49\right\}\)
Tìm \(x\in Z\) để \(A=\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\in Z-\)
1, Tìm \(x,y\in Z\): \(xy+\dfrac{x^3+y^3}{3}=2007\)
2, Tìm \(x,y\in Z:19x^2+28y^2=729\)
3, Tìm \(x\in Z:x^4+2x^3+2x^2+x+3\) là SCP
Cho `2` tập hợp `A={x in Z` | `x > m }` và `B= {x in Z ` | ` x <= (2m-1)/3}` với `m in Z`. TÌm `m` để \(A\cap B\)
\(A\cap B=\left\{{}\begin{matrix}x>m\\x\le\dfrac{2m-1}{3}\end{matrix}\right.\left(1\right)\)
\(TH1:m< \dfrac{2m-1}{3}\)
\(\Leftrightarrow m-\dfrac{2m-1}{3}< 0\)
\(\Leftrightarrow\dfrac{m-1}{3}< 0\)
\(\Leftrightarrow m< 1\)
\(\left(1\right)\Leftrightarrow A\cap B=\left\{x\in Z|m< x\le\dfrac{2m-1}{3}\right\}\)
\(TH2:m>\dfrac{2m-1}{3}\)
\(\Leftrightarrow m-\dfrac{2m-1}{3}>0\)
\(\Leftrightarrow\dfrac{m-1}{3}>0\)
\(\Leftrightarrow m>1\)
\(\left(1\right)\Leftrightarrow A\cap B=\varnothing\)
A=\(\dfrac{4\sqrt{x}+6}{\sqrt{x}}\)
a,tìm x\(\in Z,để\) A\(\in Z\)
đk x khác 0
\(A=4+\dfrac{6}{\sqrt{x}}\Rightarrow\sqrt{x}\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Tìm \(x\in Z\) để \(A\in Z\) biết \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
ĐKXĐ: \(x\ge0;x\ne25\)
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\dfrac{7}{\sqrt{x}-5}\)
Để \(A\in\mathbb{Z}\) thì: \(\dfrac{7}{\sqrt{x}-5}\) nhận giá trị nguyên
\(\Rightarrow 7\vdots\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(7\right)\)
\(\Rightarrow\sqrt{x}-5\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{6;12;4;-2\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{4;6;12\right\}\)
\(\Rightarrow x\in\left\{16;36;144\right\}\left(tm\right)\)
Vậy \(A\in \mathbb{Z}\) khi \(x\in\left\{16;36;144\right\}\)
Câu 1
a) Tìm x, y, z \(\in\)Z, biết : |x| + |y| + |z| = 0
b) Tìm x\(\in\)Z, biết : |x + 2| + |x + 5| + |x + 9| + |x + 11| + 5x
c