cho a+b+c=6 ; a^2+b^2+c^2=12
Tính giá trị biểu thức:
A = \(\dfrac{a^2}{a^2+bc}+\dfrac{b^2}{b^2+ac}+\dfrac{c^2}{c^2+ab}\)
cho a,b,c,d >0 và 2(a+b+c+d)>-abcd chứng minh a^2+b^2+c^2+d^2>=abcd
bài 2 cho a,b,c>0 và a+b+c>=abc chứng minh có ít nhất 2 trong 3 bdt sau là đúng 2/a +3/b+ 6/c>=6 2/b + 3/c+ 6/a>=6 2/c + 3/a +6/b >=6
cho a,b,c thuộc N và a+b+c chia hết 6.CMR:(a+b)(a+c)(b+c)-2abc chia hết cho 6
Lời giải:
Biến đổi:
\((a+b)(b+c)(c+a)-2abc=ab(a+b)+bc(b+c)+ca(c+a)\)
\(=ab(a+b+c)+bc(a+b+c)+ac(a+b+c)-3abc\)
\(=(a+b+c)(ab+bc+ac)-3abc\)
Ta thấy , nếu cả 3 số \(a,b,c\) đều lẻ, thì \(a+b+c\) lẻ, do đó \(a+b+c\not\vdots 6\) (không t/m điều kiện đề bài)
Do đó, tồn tại ít nhất một số trong 3 số $a,b,c$ là số chẵn
Kéo theo \(3abc\vdots 6\)
Mà \(a+b+c\vdots 6\Rightarrow (a+b+c)(ab+bc+ac)\vdots 6\)
\(\Rightarrow (a+b+c)(ab+bc+ac)-3abc\vdots 6\)
\(\Leftrightarrow (a+b)(b+c)(c+a)-2abc\vdots 6\) (đpcm)
cho các số a b c thỏa mãn điều kiện a+b+c=6. CMR ab/6+a-c +bc/6+b-a +ca/6+c-b <= 2
Lời giải:
Đặt biểu thức đã cho là $P$
Do $a+b+c=6$ nên:
$P=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}$
$2P=\frac{2ab}{2a+b}+\frac{2bc}{2b+c}+\frac{2ca}{2c+a}$
$=b-\frac{b^2}{2a+b}+c-\frac{c^2}{2b+c}+a-\frac{a^2}{2c+a}$
$=a+b+c-\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)$
Áp dụng BĐT Cauchy-Schwarz:
$\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)\geq \frac{(b+c+a)^2}{2a+b+2b+c+2c+a}=\frac{a+b+c}{3}$
Do đó: $2P\leq a+b+c-\frac{a+b+c}{3}=\frac{2}{3}(a+b+c)=\frac{2}{3}.6=4$
$\Rightarrow P\leq 2$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
Lời giải:
Đặt biểu thức đã cho là $P$
Do $a+b+c=6$ nên:
$P=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}$
$2P=\frac{2ab}{2a+b}+\frac{2bc}{2b+c}+\frac{2ca}{2c+a}$
$=b-\frac{b^2}{2a+b}+c-\frac{c^2}{2b+c}+a-\frac{a^2}{2c+a}$
$=a+b+c-\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)$
Áp dụng BĐT Cauchy-Schwarz:
$\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)\geq \frac{(b+c+a)^2}{2a+b+2b+c+2c+a}=\frac{a+b+c}{3}$
Do đó: $2P\leq a+b+c-\frac{a+b+c}{3}=\frac{2}{3}(a+b+c)=\frac{2}{3}.6=4$
$\Rightarrow P\leq 2$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
cmr với n là số tn thì
a)2 nhân n mũ 3 +n chia hết cho 3.
b)n nhân (5n cộng 3) nhân (2n mũ 2 cộng 1) chia hết cho 6.
c) cho số tn a,b,c. chứng minh rằng a mũ 3 cộng b mũ 3 cộng c mũ 3 chia hết cho 6 thì a cộng b cộng c chia hết cho 6 và ngược lại, nếu a +b+c chia hết cho 6 thì a mũ 3 +b mũ 3+c mũ 3 cũng chia hết cho 6
cho các số dương a,b,c thỏa mãn điều kiện a+b+c=6. chững minh rằng: ab/6+a-c +bc/6+b-a + ca/6+c-b <=2
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{ab}{6+a-c}=\frac{ab}{a+b+c+a-c}=\frac{ab}{2a+b}\)
\(=\frac{ab}{a+a+b}\le\frac{1}{9}\left(\frac{ab}{a}+\frac{ab}{a}+\frac{ab}{b}\right)=\frac{1}{9}\left(2b+a\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{6+b-a}\le\frac{1}{9}\left(2c+b\right);\frac{ca}{6+c-b}\le\frac{1}{9}\left(2a+c\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{9}\cdot3\left(a+b+c\right)=\frac{1}{3}\cdot\left(a+b+c\right)=\frac{6}{3}=2\)
Đẳng thức xảy ra khi \(a=b=c=2\)
ek giúp bài này vs
cho a,b,c,d >0 và 2(a+b+c+d)>=abcd chứng minh a^2+b^2+c^2+d^2>=abcd
bài 2 cho a,b,c>0 và a+b+c>=abc chứng minh có ít nhất 2 trong 3 bdt sau là đúng 2/a +3/b+ 6/c>=6 2/b + 3/c+ 6/a>=6 2/c + 3/a +6/b >=6
Cho a, b , c thuoc z thoa mana+b+c chia het cho 6
Chung Minh (a+b)(b+c)(a+c)-2abc chia het cho 6
Có a+b+c chia hết cho6
=>(a+b+c)có tổng chi hết cho 6(dấu hiệu chia hết cho
Có hai số nguyên chẵn liên tiếp có tổng chia hết cho 6
=>a,b,c cánh nhau 2 đơn vị
Cho a,b,c là độ dài ba cạnh của tam giác có diện tích bằng \(\sqrt{3}\)Cmr
\(\frac{a^4+b^4}{a^6+b^6}+\frac{b^4+c^4}{b^6+c^6}+\frac{c^4+a^4}{c^6+a^6}\le\frac{3}{4}\)
Bài 1: CMR với mọi số thực a; b; c thì:
\(\left(a+b\right)^6+\left(b+c\right)^6+\left(c+a\right)^6\ge\dfrac{16}{61}\left(a^6+b^6+c^6\right)\)\
Bài 2: Cho a;b;c là các cạnh của tam giác:
CMR: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\)
Giúp mk với các bạn ơi
Cho a/b=c/d ; b+d khác 0
Chứng minh (3a^6+c^6)/(3b^6+d^6)=(a+c)^6/(b+d)^6