Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nu Mùa
Xem chi tiết
2611
29 tháng 9 2023 lúc 20:48

Xét `\triangle MNP` vuông tại `M` có `MI` là đường cao

  `@MN=\sqrt{MI^2+NI^2}=\sqrt{881}`.

  `@NP=[MN^2]/[NI]=35,24`.

  `@MP=\sqrt{NP^2-MN^2}=[16\sqrt{881}]/25`.

  `@IP=\sqrt{MP^2-MI^2}=10,24`.

akakak21
Xem chi tiết
Dưa Hấu
11 tháng 7 2021 lúc 9:19

undefined

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 0:47

undefined

Linh Linh
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 6 2021 lúc 11:48

\(\dfrac{MN}{MP}=\dfrac{3}{4}\Rightarrow MN=\dfrac{3}{4}MP\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{MI^2}=\dfrac{1}{MN^2}+\dfrac{1}{MP^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{48}{5}\right)^2}=\dfrac{1}{\left(\dfrac{3}{4}MP\right)^2}+\dfrac{1}{MP^2}\)

\(\Rightarrow MP^2=\dfrac{20736}{625}\Rightarrow MP=\dfrac{144}{25}\)

\(\Rightarrow MN=\dfrac{3}{4}MP=\dfrac{108}{25}\)

\(NP=\sqrt{MN^2+MP^2}=\dfrac{36}{5}\)

b. Áp dụng hệ thức lượng:

\(MP^2=IP.NP\Rightarrow IP=\dfrac{MP^2}{NP}=\dfrac{576}{125}\)

\(S_{MIP}=\dfrac{1}{2}IP.MI=\dfrac{13824}{625}\)

Nguyễn Việt Lâm
24 tháng 6 2021 lúc 11:50

undefined

Thanh Tẩy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 5:00

a: ΔPIM vuông tại I

=>IP^2+IM^2=MP^2

=>IM^2=10^2-6^2=64

=>IM=8(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên PI*PN=PM^2

=>PN=10^2/6=50/3(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên MI^2=IN*IP

=>IN=8^2/6=32/3(cm)

Xét ΔMNP vuông tại M có sin MNP=MP/PN

=10:50/3=3/5

=>góc MNP=37 độ

b: C=MN+NP+MP

=10+40/3+50/3

=10+90/3

=10+30

=40(cm)

c: Xét ΔIMP vuông tại I có IK là đường cao

nên IK*PM=IP*IM

=>IK*10=6*8=48

=>IK=4,8(cm)

Ngô Anh Đức
Xem chi tiết
Linh Trúc
Xem chi tiết

1: AB=20cm

=>AB=2dm

=>\(\dfrac{AB}{CD}=\dfrac{2}{4}=\dfrac{1}{2}\)

2: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

\(\widehat{N}\) chung

Do đó: ΔHNM đồng dạng với ΔMNP

Xét ΔHPM vuông tại H và ΔMPN vuông tại M có

\(\widehat{P}\) chung

Do đó: ΔHPM đồng dạng với ΔMPN

Xét ΔHMN vuông tại H và ΔHPM vuông tại H có

\(\widehat{HMN}=\widehat{P}\left(=90^0-\widehat{N}\right)\)

Do đó: ΔHMN~ΔHPM

Câu 3:

ΔDEF~ΔMNP

=>\(\widehat{E}=\widehat{N}\) và \(\dfrac{DE}{MN}=k\)

Xét ΔDHE vuông tại H và ΔMIN vuông tại I có

\(\widehat{E}=\widehat{N}\)

Do đó: ΔDHE đồng dạng với ΔMIN

=>\(\dfrac{DH}{MI}=\dfrac{DE}{MN}=k\)

Thuyet Hoang
Xem chi tiết
Hquynh
10 tháng 9 2023 lúc 19:37

M N I P

a, Áp dụng định lý Pytago vào tam giác MNP

\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{6\times8}{10}=4,8\left(cm\right)\)

b, Áp dụng định lý Pytago vào tam giác MNP

\(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{9^2+16^2}=\sqrt{337}\left(cm\right)\)

Ta cs

\(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{9\times16}{\sqrt{337}}\approx7,8\left(cm\right)\)

c, \(MN^2+MP^2=NP^2\\ \Rightarrow NP=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2}=\sqrt{5}\left(cm\right)\)

Ta có \(MN\times MP=MI\times NP\\ \Rightarrow MI=\dfrac{\sqrt{2}\times\sqrt{3}}{\sqrt{5}}=\dfrac{\sqrt{30}}{5}\left(cm\right)\)

Thảo Nguyễn
Xem chi tiết
đặng duy hải
Xem chi tiết