HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.
Bài 1: Cho ∆MNP vuông tại M; đường cao MI. Biết và MI = 9,8cm a/ Tính MN; MP; NP b/ Tính diện tích tam giác MIP Bài 2: Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.
Cho tam giác MNP nhọn, đường cao MH. Gọi A, B lần lượt là hình chiếu của H trên MN; MP a/ Chứng minh : MN.MA = MP2 – HP2. b/ Chứng minh: MB. MP = MN. MA c/ Chứng minh góc MAB = góc MPN
Cho tam giác DEF có DE = 5cm; FD = 12cm; EF = 13cm. Vẽ đường cao DK a/ Tính DK. b/ Tính diện tích tam giác KDE
Cho tam giác MNP vuông tại M đường cao MH. Biết NH = 1,8 cm; MH = 2,4cm. Tính diện tích của ∆MNP