Cho tam giác MNP vuông tại M, đường cao MH. Gọi E, F lần lượt là hình chiếu của H trên MN, MP.
a) Chứng minh: NH . PH = ME . MN
b) Chứng minh: \(\dfrac{NH}{PH}\)=\(\left(\dfrac{MN}{MP}\right)^2\)
c) Chứng minh: ∠MNF = ∠MPE
Cho tam giác MNP vuông taib M (MN<MP) đường cao MH. Từ H kẻ HQ vuông góc với MN tại Q và HG vuông góc với MP tại G.
a) Chứng minh tứ giác MQHG là hình chữ nhật.
b) Gọi I là trung điểm của HP, K là điểm đối xứng với M qua I. Chứng minh MP//Hk
c) QG cắt MH tại O; PO cắt MK tại D. Chứng minh: MK= 3MD
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
Cho tam giác MNP (MN < MP) nhọn, đường tròn tâm O đường kính NP cắt hai cạnh MN và MP lần lượt tại A và B, NB, PA cắt nhau tại H, MH cắt NP tại I
a) Chứng minh :MH vuông NP tại I và HN . HB = HP . HA
b) Chứng minh : tứ giác BHIP nội tiếp
c) Chứng minh: AH là phân giác của góc IAB và BH là phân giác của góc IBA
d) AI cắt (O) tại K . Cm: MH // BK
Cho tam giác MNP vuông tại M, đường cao
a) Biết .
Tính MH, MN, MP (độ dài đoạn thẳng chỉ dùng ở câu a)
b) Kẻ HD vuông góc với MN tại D, HE vuông góc với MP tại E. Gọi O là giao điểm của MH và DE. Chứng minh: MDHE là hình chữ nhật và MH = DE
c) Chứng minh: và NH 14,4 Ph25,6
d) Chứng minh:
e) Chứng minh:
g) Qua E kẻ EQ DE
Chứng minh Q là trung điểm PH và O là trực tâm của tam giác MNQ
Bài 1: Cho ∆MNP vuông tại M; đường cao MI. Biết và MI = 9,8cm a/ Tính MN; MP; NP b/ Tính diện tích tam giác MIP Bài 2: Cho ∆CDE có 3 góc nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H trên CD; CE. a/ Chứng minh : CD. CM = CE. CN b/ Chứng minh ∆CMN đồng dạng với ∆CED.
cho tam giác mnp, đừng cao me.gọi k,h lần lượt là hình chiếu của e trên mn,mp. m a) chứng minh mk.mn = mh.mp b.Biết me=h,góc M=en pha.Tính độ dài HK theo h và en pha
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
cho tam giác mnp vuông tại m,đường cao mh,đường phân giác me a,cho mn=9cm,mp=12cm.Tính np,mh,nh ,góc nmh (làm tròn đến độ) b,Gọi q và k lần lượt là hình chiếu của e trên mn và mp +,;tg mqek là hình gì ,tính qe,ek theo me +,CM : 1/mn +1/mp =căn2 /me