Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ran Haitani
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 19:47

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

Quynh Nhu
Xem chi tiết

 đây nhỉ

Kudo Shinichi
1 tháng 1 2022 lúc 19:22

Ta có:

\(AB=2AC\\ \Rightarrow AB^2=\left(2AC\right)^2=4AC^2\)

Áp dụng định lí Pythagoras vào tam giác ABC vuông tại A, ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow4AC^2+AC^2=15^2\)

\(\Rightarrow5AC^2=225\)

\(\Rightarrow AC^2=225:5=45\\ \Rightarrow AC=\sqrt{45}\left(cm\right)\)

\(\Rightarrow AB=2.AC=2.\sqrt{45}=\sqrt{180}\left(cm\right)\)

 

 

 

Việt Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 13:22

\(\widehat{A}=90^0\)

Mỹ Huyền
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 9 2021 lúc 17:34

Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=25\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ABC vuông tại A:

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)

Ta có: \(P_{ABC}=AB+AC+BC=20+15+25=60\left(cm\right)\)

Nguyễn Hà Thảo
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 10:10

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Hạ Ann
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Anbert_An
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 7 2023 lúc 19:39

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

Dương Văn Tiến
Xem chi tiết
CTD Thành
7 tháng 5 2022 lúc 8:34

a, Do ABC vuông cân
=> Góc A = 90 độ
=> Góc B = Góc C = 90/2 = 45 độ
b, Do AB < AC < BC (11 < 15 < 19)
=> Góc C < Góc B < Góc A (Quan hệ góc đối diện)

Như Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 23:02

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)