Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Bia
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 23:25

Mở ảnh

Tiếng anh123456
Xem chi tiết
Lê Minh Thuận
28 tháng 6 2023 lúc 14:30

TK:

Ta có tam giác vuông ABC với đường cao AH.

Theo định nghĩa, đường cao AH là đoạn thẳng vuông góc với cạnh đối diện và đi qua đỉnh của tam giác.

Vì tam giác ABC vuông tại A, nên AH là đường cao của tam giác.

Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:

\(AB^2+AC^2=BC^2\)

\(4^2+7,5^2=BC^2\)

\(16+56,25=BC^2\)

\(72,25=BC^2\)

\(BC\approx8,5cm\)

Vì AH là đường cao của tam giác ABC, nên AH chia BC thành hai đoạn HB và HC.

\(HB=BC\times\left(\dfrac{AB}{AC}\right)\)

\(HB=8,5\times\left(\dfrac{4}{7,5}\right)\)

\(HB\approx4,53cm\)

\(HC=BC-HB\)

\(HC=8,5-4,53\)

\(HC\approx3,97cm\)

Vậy \(HB\approx4,53cm\) và \(HC\approx3,97cm\)

Nguyễn Thị Ngọc Trâm
Xem chi tiết
Nguyễn Huy Tú
13 tháng 7 2021 lúc 19:07

undefined

Ngọc anh Vũ Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 12:35

Vì ΔABC vuông tại A nội tiếp \(\left(O\right)\) nên O là trung điểm của BC

hay R=OB=OC

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=7.5^2-4.5^2=36\)

hay HB=6cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BC=\dfrac{7.5^2}{6}=9.375\left(cm\right)\)

\(\Leftrightarrow R=4.6875\left(cm\right)\)

sumin
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 19:45

Sửa đề: BD=7,5cm

BC=7,5+10=17,5cm

AD là phân giác

=>AB/BD=aC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=17,5^2

=>k=3,5

=>AB=10,5cm; AC=14cm

AH=10,5*14/17,5=8,4cm

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45=\dfrac{2\cdot10.5\cdot14}{10.5+14}\cdot\dfrac{\sqrt{2}}{2}=6\sqrt{2}\left(cm\right)\)

Phạm Nguyễn Thúy Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Cô Nàng Họ Lê
Xem chi tiết
Mai Nguyễn thanh
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 11 2021 lúc 15:31

\(a,BC^2=AB^2+AC^2\Rightarrow\Delta ABC\) vuông tại A

\(b,\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\\ AH=\dfrac{AB\cdot AC}{BC}=3,6\left(cm\right)\\ c,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot4,5=13,5\)

nthv_.
17 tháng 11 2021 lúc 15:33

a. \(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=53^0\\sinB=\dfrac{AC}{BC}\approx37^0\end{matrix}\right.\)

\(\Rightarrow A=180^0-\left(C+B\right)=180^0-\left(53^0+37^0\right)=90^0\left(tong3goctrong1tg\right)\)

Vậy tg ABC vuông tại A

SenARi
17 tháng 11 2021 lúc 15:51

a. cm △ABC ⊥ tại A:
     Xét: 6+ 4,5= 7,52
 =>  AB2 + AC2 = BC2
=> △ABC ⊥ tại A ( Pi-ta-go đảo)
b. sinB= AC/BC
=> sinB= 4,5/7,5 = 0,6
=>∠B = 38,87

góc C tương tự nhé!
 Xét △ABC vuông tại A, đường cao AH:
=> 1/AB2 + 1/AC2 = 1/AH2 ( hệ thức lượng)
=> 1/62 + 1/4,52 = 1/AH2

            AH = 3,6 ( cm)

c. S△ABC= \(\dfrac{AB.AC}{2}\)

                = \(\dfrac{6.4,5}{2}\)

               = 13,5 ( cm2)

Bảo Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 21:40

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)