Vì ΔABC vuông tại A nội tiếp \(\left(O\right)\) nên O là trung điểm của BC
hay R=OB=OC
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=7.5^2-4.5^2=36\)
hay HB=6cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BC=\dfrac{7.5^2}{6}=9.375\left(cm\right)\)
\(\Leftrightarrow R=4.6875\left(cm\right)\)