Cho ΔABC nhọn nội tiếp (O;R). Gọi x,y,z là khoảng cách từ O đến các cạnh BC = a; CA = b; AB = c của ΔABC. CM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\sqrt{\frac{R}{2}}\)
Cho ΔABC nhọn nội tiếp đường tròn (O) có H là trực tâm của ΔABC. Gọi R là điểm đối xứng của O qua BC. Chứng minh rằng R là tâm đường tròn ngoại tiếp ΔBHC.
Giúp mình với ạ!!!
Cho ΔABC nhọn nội tiếp (O;12),AB=8;AC=15.Khi đó độ dài đường cao AH của ΔABC là
A.5 B.10 C.7 D.3
Cho ΔABC nhọn nội tiếp (O) và AB<AC.Vẽ đường cao CD của ΔABC và đường kính AM.Hạ CE⊥AM tại E , H là trực tâm của ΔABC.Chứng minh DE.BC=DC.BM
Cho ΔABC có 3 góc nhọn nội tiếp (O ;R) các đường cao AD,BE cắt nhau tại H , kéo dài BE cắt (O) tại F
a, cm : tg CDHE nội tiếp
b, Gọi M là trung điểm của AB
cm : ME là tiếp tuyến của đường tròn ngoại tiếp ΔCDE
c, Cho BC cố định và BC = R \(\sqrt{3}\)
Xác định vị trí của A trên (O) để DH.DA đạt GTLN
a.
Xét tứ giác CDHE có:
\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)
Do đó: tứ giác CDHE là tứ giác nội tiếp.
b. Gọi I là trung điểm của HC
=> I là tâm đường tròn ngoại tiếp tam giác DEC
Có: EM là trung tuyến tam giác vuông BEA
=> \(\widehat{MEB}=\widehat{MBE}\)
EI là trung tuyến tam giác vuông HEC
=> \(\widehat{IEH}=\widehat{IHE}\)
Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )
=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)
=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.
c. Xét tam giác vuông BDH và tam giác vuông ADC có:
\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )
=> \(\Delta BDH\sim\Delta ADC\)
=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)
<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)
\(DH.DA\) max \(=\dfrac{3R^2}{4}\) khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.
☕T.Lam
Cho ΔABC nhọn nội tiếp đường tròn (O;R), đường kính AK . Ba đường cao
AD,BE,CF của ΔABC cắt nhau tại H . Gọi M là hình chiếu vuông góc của C trên AK .
a) Chứng minh rằng tứ giác AEHF nội tiếp.
b) Chứng minh rằng ΔABD đồng dạng với ΔAKC và AB.AC=2R.AD .
c) Giả sử BC là dây cố định của đường tròn (O) còn A di động trên cung lớn BC.
Tìm vị trí của điểm A để diện tích tam giác AEH lớn nhất.
cho ΔABC nội tiếp đường tròn tâm (O) , (O') tiếp xúc các cạnh AB , AC tại E và F. (O') tiếp xúc với (O) tại S. gọi I là tâm của đường tròn nội tiếp ΔABC
chứng minh : BEIS , CFIS nội tiếp.
Cho ΔABC có ba góc nhọn (AB<AC) nội tiếp (O),đường cao AH.Trên đoạn AH lấy điểm D bất kỳ.Gọi M và N lần lượt là hình chiếu của D trên AB và AC.Chứng minh MN song song với tiếp tuyến tại A của (O)
- Xét △AMD và △AHB có: \(\widehat{AMD}=\widehat{AHB}\left(=90^0\right)\), \(\widehat{BAH}\) là góc chung.
\(\Rightarrow\Delta AMD\sim\Delta AHB\left(g-g\right)\)
\(\Rightarrow\dfrac{AM}{AH}=\dfrac{AD}{AB}\Rightarrow AM.AB=AD.AH\left(1\right)\)
- Xét △AND và △AHC có: \(\widehat{AND}=\widehat{AHC}=90^0\), \(\widehat{CAH}\) là góc chung.
\(\Rightarrow\Delta AND\sim\Delta AHC\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AN}{AH}\Rightarrow AD.AH=AN.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AM.AB=AN.AC\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét △AMN và △ACB có: \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt), \(\widehat{BAC}\) là góc chung.
\(\Rightarrow\Delta AMN\sim\Delta ACB\left(c-g-c\right)\)
\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)
Ta có \(OA=OB\) nên △OAB cân tại O.
\(\Rightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)
Xét (O): \(\widehat{AOB}=2\widehat{ACB}\left(=sđ\stackrel\frown{AB}\right)\)
\(\Rightarrow\widehat{OAB}=\dfrac{180^0-2\widehat{ACB}}{2}=90^0-\widehat{ACB}\)
\(\Rightarrow\widehat{OAB}+\widehat{AMN}=90^0\) nên MN vuông góc với OA.
=>MN song song với tiếp tuyến tại A của (O) (vì OA là bán kính của (O) ).
cho ΔABC nhọn, AB < AC nội tiếp (O). Kẻ 3 đường cao AB, BE, CF cắt nhau tại H, kéo dài AD cắt (O) tại K.
a) Chứng minh: Tứ giác BFEC nội tiếp và DCH = DCK
b) Tia KE cắt (O) tại M, BM cắt EF tại I, kẻ ES ⊥ AB tại S.
Chứng minh: BE2= BI. BM và tứ giác AMIS nội tiếp\(\)
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc DCH=góc HCB=góc HAB=1/2*sđ cung BK
=góc DCK
b: Xét ΔBEI và ΔBME có
góc BEI=góc BME(=1/2*sđ cung BK)
góc EBI chung
=>ΔBEI đồng dạng với ΔBME
=>BE/BM=BI/BE
=>BE^2=BM*BI
Làm câu `b,` thôi ạ
Cho ΔABC nhọn có AB<AC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Điểm D thuộc AC sao cho $\widehat{ABD}=\widehat{ACB}$, đường thẳng AI cắt đường tròn ngoại tiếp ΔDIC tại E và cắt (O) tại Q. Đường thẳng đi qua E và song song AB cắt BD tại P
a, CMR: ΔQBI cân và BP.BI=BE.BQ
b, Gọi J là tâm đường tròn nội tiếp ΔABD và K là trung điểm EJ. CMR: PK song song JB
Cho ΔABC nhọn, AK là đường cao. Đường tròn tâm O đường kính BC cắt cạnh AC tại D (D khác C), H là giao điểm của đường thẳng BD và đường thẳng AK. Kẻ tiếp tuyến AM của đường tròn (O) với M là tiếp điểm.
1, Chứng minh tgiac DCKH nội tiếp
2, Chứng minh AD.AC=AH.AK=AM²
3, Giả sử tâm của đường tròn ngoại tiếp tam giác ABC thuộc đường thẳng đi qua M và vuông góc với đường thẳng AO. Chứng minh BC= AM
Giúp với Chỉ cần câu 3 thôi ạ, Câu 1,2 chứng minh r.CM rõ nhé đừng làm tắt :<<.Cần gấp !!!!
là sao v huy , t k hỉu mài mún lm câu nào?
3, Gọi I là tâm đường tròn ngoại tiếp của tam giác ABC, IM vuông góc AO tại J
từ MJ ⊥ AO
=> \(MA^2=MO^2=JA^2=JO^2\)
có MO = \(\dfrac{BC}{2}\) , IA=IC nên \(MA^2=\dfrac{BC^2}{4}=IC^2=IO^2\) (1)
mà I là tâm đường tròn ngoại tiếp tam giác nhọn ABC , O là trung điểm BC nên
\(IO\perp IC\)
=> \(BC^2=IO^2=OC^2=\dfrac{BC^2}{4}\left(2\right)\)
từ 1 và 2 suy ra : \(MA^2=\dfrac{BC^2}{4}\) nên \(BC=\sqrt{2}AM\)