Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh Hoàng
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Ngọc linh_kimichio
3 tháng 4 2023 lúc 21:23

A

Tuấn Nguyễn
Xem chi tiết
nam do duy
Xem chi tiết
Đỗ Tuệ Lâm
27 tháng 4 2023 lúc 17:26

a.

Xét tứ giác CDHE có:

\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)

Do đó: tứ giác CDHE là tứ giác nội tiếp.

b. Gọi I là trung điểm của HC

=> I là tâm đường tròn ngoại tiếp tam giác DEC

Có: EM là trung tuyến tam giác vuông BEA

=> \(\widehat{MEB}=\widehat{MBE}\)

EI là trung tuyến tam giác vuông HEC

=> \(\widehat{IEH}=\widehat{IHE}\)

Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )

=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)

=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.

c. Xét tam giác vuông BDH và tam giác vuông ADC có:

\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )

=> \(\Delta BDH\sim\Delta ADC\)

=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)

<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)

\(DH.DA\) max \(=\dfrac{3R^2}{4}\)  khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.

T.Lam

Tử Ái
Xem chi tiết
Lê
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Trần Tuấn Hoàng
29 tháng 4 2023 lúc 16:02

- Xét △AMD và △AHB có: \(\widehat{AMD}=\widehat{AHB}\left(=90^0\right)\)\(\widehat{BAH}\) là góc chung.

\(\Rightarrow\Delta AMD\sim\Delta AHB\left(g-g\right)\)

\(\Rightarrow\dfrac{AM}{AH}=\dfrac{AD}{AB}\Rightarrow AM.AB=AD.AH\left(1\right)\)

- Xét △AND và △AHC có: \(\widehat{AND}=\widehat{AHC}=90^0\)\(\widehat{CAH}\) là góc chung.

\(\Rightarrow\Delta AND\sim\Delta AHC\left(g-g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AN}{AH}\Rightarrow AD.AH=AN.AC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AM.AB=AN.AC\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét △AMN và △ACB có: \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt), \(\widehat{BAC}\) là góc chung.

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(c-g-c\right)\)

\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)

Ta có \(OA=OB\) nên △OAB cân tại O.

\(\Rightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)

Xét (O): \(\widehat{AOB}=2\widehat{ACB}\left(=sđ\stackrel\frown{AB}\right)\)

\(\Rightarrow\widehat{OAB}=\dfrac{180^0-2\widehat{ACB}}{2}=90^0-\widehat{ACB}\)

\(\Rightarrow\widehat{OAB}+\widehat{AMN}=90^0\) nên MN vuông góc với OA.

=>MN song song với tiếp tuyến tại A của (O) (vì OA là bán kính của (O) ).

level max
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 14:02

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc DCH=góc HCB=góc HAB=1/2*sđ cung BK

=góc DCK

b: Xét ΔBEI và ΔBME có

góc BEI=góc BME(=1/2*sđ cung BK)

góc EBI chung

=>ΔBEI đồng dạng với ΔBME

=>BE/BM=BI/BE
=>BE^2=BM*BI

 

Vô danh
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Rhider
5 tháng 2 2022 lúc 15:45

Tham khảo

https://hoidap247.com/cau-hoi/1976291

Đỗ Tuệ Lâm
5 tháng 2 2022 lúc 18:07

là sao v huy , t k hỉu mài mún lm câu nào?

Đỗ Tuệ Lâm
5 tháng 2 2022 lúc 20:13

3, Gọi I là tâm đường tròn ngoại tiếp của tam giác ABC, IM vuông góc AO tại J

từ MJ ⊥ AO

=> \(MA^2=MO^2=JA^2=JO^2\)

có MO = \(\dfrac{BC}{2}\) , IA=IC nên \(MA^2=\dfrac{BC^2}{4}=IC^2=IO^2\) (1)

mà I là tâm đường tròn ngoại tiếp tam giác nhọn ABC , O là trung điểm BC nên

\(IO\perp IC\) 

=> \(BC^2=IO^2=OC^2=\dfrac{BC^2}{4}\left(2\right)\)

từ 1 và 2 suy ra : \(MA^2=\dfrac{BC^2}{4}\)  nên \(BC=\sqrt{2}AM\)