Cho các số thực: 0\(\le\)a\(\le\)1; 0\(\le\)b\(\le\)1; 0\(\le\)c\(\le\)1 thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Chứng minh: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Cho các số thực a,b,c thỏa mãn -1≤a≤b≤c≤2 và a+b+c=0 . CMR : \(a^2+b^2+c^2\)≤6
Cho các số thực a,b,c thỏa mãn: \(-1\le a\le2;-1\le b\le2;-1\le c\le2\) và \(a+b+c=0\)
Chứng minh \(a^2+b^2+c^2\le6\)
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Cho các số thực \(a,b,c,d\) sao cho \(0\le a\le b\le c\le d\) và \(c+d=a^2+b^2+c^2+d^2=1\). Tìm giá trị lớn nhất của \(a+b\).
hhijestfijteryijryihrjgi
huhyhygtftfrhhfmmhjdhmjhmhxffhdfhdfghdfhdfhdfhhhfhhdfhhgfjgjghfghgghghhh
Ta có: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)
\(\Leftrightarrow1\ge\frac{\left(a+b\right)^2}{2}+\frac{1}{2}\)
\(\Leftrightarrow a+b\le1\)
Vậy Max a+b=1 khi và chỉ khi a=b=c=d=1/2
cho 3 số thực dương \(0\le a\le b\le c\le1\) .chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)
Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)
cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)
Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)
chứng minh tương tự suy ra đpcm
Ta có: 0≤a≤b≤c≤1⇔{1−a≥01−b≥00≤a≤b≤c≤1⇔{1−a≥01−b≥0
⇒(1−a)(1−b)≥0⇔1(1−b)−a(1−b)≥0⇒(1−a)(1−b)≥0⇔1(1−b)−a(1−b)≥0
⇒1−b−a+ab≥0⇔1+ab≥a+b⇒1−b−a+ab≥0⇔1+ab≥a+b
Tiếp tục chứng minh ta có: {1≥c0≤a≤b⇔ab≥0{1≥c0≤a≤b⇔ab≥0
cộng theo vế: 1+ab+1+ab≥a+b+c+01+ab+1+ab≥a+b+c+0
⇒2(1+ab)≥a+b+c⇒2(1+ab)≥a+b+c
Ta có: cab+1=2c2(ab+1)≤2ca+b+ccab+1=2c2(ab+1)≤2ca+b+c (1)
Cho số thực x thỏa mãn 0≤x≤1. Chứng minh x2≤x
Xét hiệu:
\(x^2-x=x\left(x-1\right)\)
Mà \(0\le x\le1\Rightarrow x\ge0;x-1\le0\)
\(\Rightarrow x\left(x-1\right)\le0\)
\(\Rightarrow x^2-x\le0\Leftrightarrow x^2\le x\)
cho x,y,z là các số thực khác 0, thõa mãn các điều kiện 1 \(\le\) x \(\le\) \(\frac{7}{3};\frac{1}{2}\le y\le\frac{7}{6};\frac{1}{3}\le z\le\frac{7}{9}\)
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTNN của \(Q=\dfrac{2a^2-ac-2ab+bc}{a^2-ab+ac}\)
\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)
\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)
Đặt \(m+n=t\Rightarrow0\le t\le2\)
\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)
cho 3 số thực a,b,c thỏa mãn:\(0\le a\le b+1\le c+2\)và a+b+c=1
tìm giá trị nhỏ nhất của c
Cho a,b,c là các số thực thỏa mãn 0≤a≤b≤c≤1 . Tìm giá trị nhỏ nhất của biểu thức \(A=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x;y;z\le2\)
\(\Rightarrow A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}=9\)
Dấu "=" xảy ra khi \(x=y=z\)
Nhưng như vậy thì dễ quá, nên chắc đây là 1 bài toán tìm GTLN
Tìm GTLN thì nó chính là bài toán này, làm biếng gõ lại: