Trên mặt phẳng Oxy cho đường thẳng (d):y=(2m+1)x-\(m^2\)-m+6 và Parabol (P): y=\(x^2\)
b) Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1\);\(x_2\) sao cho: \(\left|x_1^2-x_2^2\right|\)= 50
Em cần giải vội ạ
2. Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=X’ và đường thẳng (d):
y=3x+m² -1
a) Tìm m để đường thẳng (d) đi qua điểm A(-1: 5).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x,,, thỏa
mãn |x|+2|x|=3.
Trên mặt phẳng Oxy cho đường tẳng (d) y=(2m+1)x-m^2-m+6 parabol (P) y=x^2
a) Tìm tọa độ giao điểm khi m=0
b) Tìm các số dương m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1,x2 sao cho x1-x2=25
Trên mặt phẳng tọa độ Oxy cho parabol (P) y = x² và đườngthẳng (d) y = 4x +m-3.
1. Xác định m để đường thẳng d cắt trục OX tại điểm A, cắt trục Oy tại điểm B sao cho S aob=9.
2. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1; x2 thỏa mãn (4-x1)(x2-1)=2.
1: Tọa độ A là:
y=0 và 4x+m-3=0
=>x=(-m+3)/4 và y=0
=>OA=|m-3|/4
Tọa độ B là:
x=0 và y=m-3
=>OB=|m-3|
Theo đề, ta có: 1/2*(m-3)^2/4=9
=>(m-3)^2/4=18
=>(m-3)^2=72
=>\(m=\pm6\sqrt{2}+3\)
2:
PTHĐGĐ là:
x^2-4x-m+3=0
Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4
Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0
=>m>-1
(4-x1)(x2-1)=2
=>4x2-4-x1x2+1=2
=>x2(x1+x2)-3-(-m+3)=2
=>x2*4-3+m-3=2
=>x2*4=2-m+6=8-m
=>x2=2-1/2m
=>x1=4-2+1/2m=1/2m+2
x1*x2=-m+3
=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2
=>-m+3-4+1/4m^2=0
=>1/4m^2-m-1=0
=>m^2-4m-4=0
=>\(m=2\pm2\sqrt{2}\)
Trong mặt phẳng tọa độ Oxy cho parabol ( P):y= \(x^2
\) và đường thẳng
( d) : y= \(2(m+1)x-m^2-2\)(m là tham số)
Tìm các giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x^1,x^2\) sao cho \(x_1^2+x_1x_2+2=3x_1+x_2\)
Trên mặt phẳng toạ độ Oxy, cho đường thẳng (d) : y = mx - m +1 và parabol (P) : y = x^2
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 2
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 , x2 thoả mãn x1 + 3x2 = 7
b) Phương trình hoành độ giao điểm của (P) và (d):
x² = mx - m + 1
⇔ x² - mx + m - 1 = 0
∆ = m² - 4.1.(m - 1)
= m² - 4m + 4
= (m - 2)² ≥ 0 với mọi m ∈ R
⇒ Phương trình luôn có hai nghiệm
Theo Viét ta có:
x₁ + x₂ = m (1)
x₁x₂ = m - 1 (2)
Lại có x₁ + 3x₂ = 7 (3)
Từ (1) ⇒ x₁ = m - x₂ (4)
Thay x₁ = m - x₂ vào (3) ta được:
m - x₂ + 3x₂ = 7
2x₂ = 7 - m
x₂ = (7 - m)/2
Thay x₂ = (7 - m)/2 vào (4) ta được:
x₁ = m - (7 - m)/2
= (2m - 7 + m)/2
= (3m - 7)/2
Thay x₁ = (3m - 7)/2 và x₂ = (7 - m)/2 vào (2) ta được:
[(3m - 7)/2] . [(7 - m)/2] = m - 1
⇔ 21m - 3m² - 49 + 7m = 4m - 4
⇔ 3m² - 28m + 49 + 4m - 4 = 0
⇔ 3m² - 24m + 45 = 0
∆' = 144 - 3.45 = 9 > 0
Phương trình có hai nghiệm phân biệt:
m₁ = (12 + 3)/3 = 5
m₂ = (12 - 3)/3 = 3
Vậy m = 3; m = 5 thì (P) và (d) cắt nhau tại hai điểm có hoành độ thỏa mãn x₁ + 3x₂ = 7
a: Thay x=0 và y=2 vào (d), ta được:
1-m=2
=>m=-1
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y=x2 và đường thẳng (d): y=2(m-1)x+5-2m (m là tham số)
a) Vẽ đồ thị parabol (P).
b) Biết đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1, x2. Tìm m để x+x=6
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=2\left(m-1\right)x+5-2m\)
\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=2\left(m-1\right)\)
Ta có: \(x_1+x_2=6\)
\(\Leftrightarrow2\left(m-1\right)=6\)
\(\Leftrightarrow m-1=3\)
hay m=4
Vậy: m=4
trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=nx-3 và parabol (p) y=\(x^2\)
1. tìm n để đường thẳng (d) đi qua điểm B(1;0)
2. tìm n để (d)cắt (p) tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\)thỏa mản \(\left|x_1-x_2\right|=2\)
Trong mặt phẳng tọa độ Oxy, cho đường thắng d: y= 2(m + 1)x – 2m và parabol P: y = x^2. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm có hoành độ x1,x2 sao cho √x1 + √x2= √2
Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng d: y=2x+|m|+ 1 ( m là tham số ). a) Chứng minh đường thẳng ở luôn cắt (P) tại 2 điểm phân biệt. b) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1 x2
a: PTHĐGĐ là:
x^2-2x-|m|-1=0
a*c=-|m|-1<0
=>(d)luôn cắt (P) tại hai điểm phân biệt
b: Bạn bổ sung lại đề đi bạn