Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Haibara Ail
Xem chi tiết
Phùng Minh Quân
31 tháng 3 2018 lúc 18:04

* Chứng minh tổng hai phân số dương nghịch đảo lớn hơn hoặc bằng 2 : 

Cho phân số : \(\frac{a}{b}\)  \(\left(a,b\inℕ^∗\right)\)

\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó : 

\(\frac{a}{b}+\frac{b}{a}-2\ge0\)\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}\ge2\) ( điều phải chứng minh ) 

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
31 tháng 3 2018 lúc 17:55

\(a)\) Ta có : 

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Vì tổng của hai phân số nguyên dương nghịch đảo sẽ luôn lớn hơn hoặc bằng 2 nên ta được : 

\(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\\\frac{b}{a}+\frac{a}{b}\ge2\end{cases}}\)

Cộng theo vế ba đẳng thức trên ta có : 

\(\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{a}{b}\ge2+2+2\)

\(\Leftrightarrow\)\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

\(\Leftrightarrow\)\(S\ge6\)

Vậy \(S\ge6\)

\(b)\) Vì \(S\ge6\) nên \(S_{min}=6\) khi \(a=b=c\)

Chúc bạn học tốt ~ 

Haibara Ail
31 tháng 3 2018 lúc 17:57

Bạn ơi, có Chứng minh đc tại sao tổng của 2 phân số dương nghịch đảo lại lớn hơn 2 ko

Xem chi tiết
Triphai Tyte
21 tháng 9 2018 lúc 10:57

ê sao hồi nãy bn chọn câu mình sai 

tth_new
21 tháng 9 2018 lúc 11:05

a)

Cách 1: Do \(a,b,c\inℕ^∗\)nên \(a,b,c\ge1\). Do đó:

 \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

Cách 2 (không thông dụng lắm, mình tự nghĩ ra) 

Dự đoán: \(a=b=c\)

Do đó: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2a}{a}+\frac{2a}{a}+\frac{2a}{a}=\frac{a\left(2+2+2\right)}{a}=6\) (do a = b = c nên ta thế b, c = a) (đpcm)

b) Từ kết quả a) ta dễ thấy GTNN của S là 6

Phùng Minh Quân
21 tháng 9 2018 lúc 11:20

tham khảo https://olm.vn/hoi-dap/question/1193140.html

Chúc bạn học tốt ~ 

NBH Productions
Xem chi tiết
Nguyễn Thị Phương Linh
Xem chi tiết
Kudo Shinichi
3 tháng 2 2020 lúc 9:34

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{ac}{ca}}=2\\\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{bc}{cb}}=2\\\frac{b}{a}+\frac{a}{b}\ge2\sqrt{\frac{ab}{ba}}=2\end{cases}}\)

\(\Rightarrow\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\ge2+2+2=6\)

\(\Leftrightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

\(\Leftrightarrow S\ge6\left(đpcm\right)\)

\(\Rightarrow S_{min}=6\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Lê Thị Thế Ngọc
Xem chi tiết
tthnew
19 tháng 6 2019 lúc 14:38

Có: \(VT=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(c+a\right)}{b+c}+\frac{\left(c+b\right)\left(a+b\right)}{a+c}\) (thay a+ b+c=1 vào r phân tích thành nhân tử)

Lại có: Theo Cô si \(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(c+a\right)}{b+c}\ge2\left(c+a\right)\)

Tương tự với hai BĐT còn lại và cộng theo vế được: \(2VT\ge4\Leftrightarrow VT\ge2^{\left(đpcm\right)}\)

"=" <=> a = b = c = 1/3

Nguyễn Việt Lâm
19 tháng 6 2019 lúc 14:43

Đặt \(P=\frac{ab+c}{a+b}+\frac{bc+a}{b+c}+\frac{ac+b}{a+c}=\frac{ab+c\left(a+b+c\right)}{a+b}+\frac{bc+a\left(a+b+c\right)}{b+c}+\frac{ac+b\left(a+b+c\right)}{a+c}\)

\(=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\)

Ta có:

\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\left(a+c\right)\)

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(b+c\right)\)

Cộng vế với vế

\(2P\ge4\left(a+b+c\right)=4\Rightarrow P\ge2\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Lê Thị Thế Ngọc
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2019 lúc 14:17

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

007
Xem chi tiết
Trần Thùy Linh
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 6 2019 lúc 22:42

Ta có đánh giá: \(\frac{a^7+b^7}{a^5+b^5}\ge\frac{a^2+b^2}{2}\)

\(\Leftrightarrow2a^7+2b^7\ge a^7+b^7+a^5b^2+a^2b^5\)

\(\Leftrightarrow a^5\left(a^2-b^2\right)-b^5\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\) (luôn đúng)

Tương tự \(\frac{b^7+c^7}{b^5+c^5}\ge\frac{b^2+c^2}{2}\) ; \(\frac{c^7+a^7}{c^5+a^5}\ge\frac{a^2+c^2}{2}\)

\(\Rightarrow VT\ge a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)