Cho a, b, c \(\inℕ^∗\) và S= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
a) CMR: S\(\ge\)6
b) Tìm giá trị nhỏ nhất (GTNN) của S
Cho a , b , c \(\inℕ^∗\)và \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
a) Chứng minh S \(\ge\)6.
b) Timf GTNN của S.
Cho a,b,c cùng thuộc N* và S=\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)
CMR S nhỏ hơn hoặc =6
Bài 1: Cho a, b, c\(\inℕ^∗\)và S =\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Tìm giá trị nhỏ nhất của S
Bài 2: Chứng minh rằng : A =\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{49^2}+\frac{1}{50^2}>\frac{1}{4}\)
Cho a,b,c \(\in\)N*, x+y+z=5,
biết S1=\(\frac{b}{a}x+\frac{c}{a}z\)
S2=\(\frac{a}{b}x+\frac{c}{b}y\)
S3=\(\frac{a}{c}z+\frac{b}{c}y\)
CMR: S1+S2+S3\(\ge\)10.
với a,b,c\(\in\)N* và S=\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{a+c}{b}\). Chứng minh rằng S\(\ge\)2
Cho 2 phân số tối giản \(\frac{a}{b}\) và \(\frac{c}{d}\) với \(a,b,c,d\inℕ^∗\) thỏa mãn \(\frac{a}{b}+\frac{c}{d}\inℤ\). CMR b=d
Cho a, b, c, d \(\inℕ^∗\)và S = (a+b / c) + (b+c/ a) + (c+a/b)
a) Chứng minh S \(\ge\) 6
b) Tìm giá trị nhỏ nhất của S