Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mavis x zeref
Xem chi tiết
ntkhai0708
19 tháng 3 2021 lúc 0:06

Ta có: $p$ là số nguyên tố $>3$

suy ra $p\not\vdots 3$

Số chính phương chia 3 dư 0 hoặc 1 mà $p^2$ là số chính phương
$p^2\not\vdots 3$ suy ra $p^2 \equiv 1 (mod 3) $

Mà $2009 \equiv 2 (mod 3)$

nên $p^2+2009 \equiv 3 \equiv 0 (mod 3)$

Hay $p^2+2009 \vdots 3$

mà $p^2+2009>3$ nên $p^2+2009$ là hợp số

AdamJohn
13 tháng 4 2023 lúc 21:16

Ta có: p� là số nguyên tố >3>3

suy ra p⋮/3�⋮̸3

Số chính phương chia 3 dư 0 hoặc 1 mà p2�2 là số chính phương
p2⋮/3�2⋮̸3 suy ra p2≡1(mod3)�2≡1(���3)

Mà 2009≡2(mod3)2009≡2(���3)

nên p2+2009≡3≡0(mod3)�2+2009≡3≡0(���3)

Hay p2+2009⋮3�2+2009⋮3

mà p2+2009>3�2+2009>3 nên p2+2009�2+2009 là hợp số

 

Hoàng Thị Linh
Xem chi tiết
Ngô Quốc Anh
Xem chi tiết
Phạm Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 11:56

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2023 lúc 19:19

Do p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3

\(\Rightarrow\) p có dạng \(p=3k+1\) hoặc \(p=3k+2\) với k là số tự nhiên và \(k\ge1\)

Nếu \(p=3k+1\Rightarrow p+2=3k+3=3\left(k+1\right)⋮3\) là hợp số (ktm)

\(\Rightarrow p=3k+2\)

Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\) là hợp số (đpcm)

Nguyễn Văn phong
Xem chi tiết
GoKu Đại Chiến Super Man
Xem chi tiết
Đào Đức Doanh
22 tháng 12 2015 lúc 22:07

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

Nguyễn Bình
Xem chi tiết
Nguyễn Bình
10 tháng 1 lúc 7:48

Cảm ơn cô

Bài 1:

Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

vậy p + 1 và p -  1 là hai số chẵn.

Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.

đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)

A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1) 

Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.

⇒ 4.k.(k + 1) ⋮ 8 

⇒ A = (p + 1).(p - 1) ⋮ 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng:

   p = 3k + 1; hoặc p = 3k + 2

Xét trường hợp p = 3k + 1 ta có:

  p - 1 = 3k + 1  - 1  = 3k ⋮ 3

⇒ A = (p + 1).(p - 1) ⋮ 3  (2)

Từ (1) và (2) ta có:

A ⋮ 3; 8  ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24

⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)

Xét trường hợp p = 3k + 2 ta có

p + 1 = 3k + 2 + 1  = 3k + 3 = 3.(k + 1) ⋮ 3 (3)

Từ (1) và (3) ta có: 

A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24 

⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)

Kết hợp (*) và(**) ta có

\(⋮\) 24 (đpcm)

 

 

  

 

 

Bài 2:

P = 10p + 1 và p là số nguyên tố lớn hơn 3 chứng minh 5p + 1 là hợp số

Ta có vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

⇒ p = 2k + 1 (k \(\in\) N*)

ta có: \(\left\{{}\begin{matrix}p=2k+1\\10p+1=10.\left(2k+1\right)+1\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}5p=5.\left(2k+1\right)\\10p+1=20k+11\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5p=10k+5\\10p+1=20k+11\end{matrix}\right.\)

⇒ 10p + 1 - 5p =  20k + 11 - (10k + 5)

⇒ 5p + 1 = 20k + 11  - 10k - 5

⇒ 5p + 1  = 10k + 6 

⇒ 5p + 1  = 2.(5k + 3)

⇒ 5p + 1 ⋮ 1; 1; (5k + 3) 

⇒ 5p + 1 là hợp số (đpcm)

 

 

nguyentrungkien
Xem chi tiết
Zintubin Gaming VN
4 tháng 1 2018 lúc 22:07

Haizz , bạn phải ghi rõ đề chứ , mình sẽ đưa bạn 1 bài mẫu

Cho p và p+8 là các số NT >3 , Cm p+100 là hợp số !

Giải : Vì p và p+8 là các số NT >3 suy ra p không chia hết cho 3 , suy ra p có dạng là 3k+1 hoặc 3k+2

TH1 : Nếu p= 3k+1 thì p+8 = 3k+1+8=3k+9 chia hết cho 3 ( loại vì p+8 là số Nguyên Tố )

TH2 : Nếu p = 3k+2 thì p+8 = 3k+10 không chia hết cho 3 

Suy ra p có dạng là 3k+2

Vậy p+100 = 3k+102 chia hết cho 3

Suy ra ĐPCM