1. Tìm số nguyên tố p , sao cho các số sau cũng là số nguyên tố :
a,p+2 và p+10
b,p+10 và p+20
2.Cho 3 số nguyên tố lớn hơn 3 , trong đó số sau lớn hơn số trước là d đơn vị . Chứng minh rằng d chia hết cho 6.
3.Cho p và p+4 là các số nguyên tố (p>3) . Chứng minh ằng p+8 là hợp số
4.Cho p và 8p-1 là các số nguyên tố . Chứng minh rằng 8p+1 là hợp số
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
với p=2ta có
p+2=2+2=4(loại)
với p=3ta có
p+10=3+10=13
p+20=3+20=23
suy ra p=3 là hợp lí
với p>3 thì p có dạng là 3k=1 và 3k=2
với p=3k+1 ta có
p+20=3k+1+20=3k+21(loại)
với p=3k=2 ta có
p+10=3k+2+10=12(loại)
Vập p = 3
Nhớ tick cho mình nhé!