Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quang Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 22:45

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

c: Ta có: ΔABH=ΔACK

nên AH=AK

d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có 

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

mà \(\widehat{HBM}=\widehat{OBC}\)

và \(\widehat{KCN}=\widehat{OCB}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

qlamm
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 22:21

a: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

Anh ko có ny
21 tháng 1 2022 lúc 22:22

a) AM=AN

b)BH=CK

c)AH=AK

Tham khảo:

A) Vì tam giác ABC cân tại A nên AB=AC góc B= góc C

Xét tam giác ΔABM vàΔ ACN CÓ

AB=AC(cmt)

BM= CN (gt)

Ta có góc ACB= góc ABC ( cmt ) mà góc ACN = ABM ( kề bù ) với góc ACB VÀ GÓC ABC

⇒ΔABM = ΔACN ( c-g-c)

B) Xét ΔMHB và ΔNKC có:

 Góc M = góc N ( 2 góc tg ứng từ cm câu a)

Bm=Cn(gt)

=> ΔMHB=ΔNKC (ch-gn)

C) ta có : 

góc C2 = góc B2 ( 2 góc tg ứng từ cm câu B)

Mà góc C1 = góc C2 ( đối đỉnh)

Và góc B1=góc B2 ( đối đỉnh)

=> góc B1=  góc C1

=> ΔOBC cân tại O

 

image

 

Câu d,e lam tự làm nha ;-;

trì ngâm
Xem chi tiết
Ngô Lê Dương
Xem chi tiết
Lưu Ngọc Anh
Xem chi tiết
Tâm Trần Huy
25 tháng 1 2017 lúc 22:07

A B C D H K M N O

tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB

ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)

suy ra AM = AN ( 2 cạnh tương ứng )

tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân

b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )

dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )

suy ra BA = Ck ( 2 cạnh tương ứng ) 

c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân

\(\Delta AHK\)và  \(\Delta AMN\) có chung đỉnh

mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN

d) kéo dài HB và CK cắt nhau tại O

nối AO

xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)

AO là cạnh huyền chung

AH = AK

do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )

e) xét tam giác \(BAD\)và \(\Delta CAD\)

BA = CA ( tam giác ABC cân tại A )

DA = DC (gt)

AD là canh chung 

do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)

phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã

Tâm Trần Huy
26 tháng 1 2017 lúc 9:29

tiếp nhé

suy ra góc BAD = góc CAD ( 2 góc tương ứng )

vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)

ta có BH = CK ( cmt)

và HO = KO (cmt)

suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )

hay BO = OC

xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)

do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)

suy ra góc BAO = góc CAO ( 2 góc tương ứng )

vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)

từ (1) và (2) suy ra A;D;O thẳng hàng 

Chàng Trai 2_k_7
Xem chi tiết
Tran Le Khanh Linh
21 tháng 4 2020 lúc 21:41

a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)

mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN

=> Tam giác AMN cân tại A

b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)

<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)

=> AH=CK

Khách vãng lai đã xóa
Nguyễn Hằng
Xem chi tiết
Thanh Quân
28 tháng 1 2022 lúc 13:08

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

Nguyễn Huy Tú
28 tháng 1 2022 lúc 13:11

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

☆Châuuu~~~(๑╹ω╹๑ )☆
28 tháng 1 2022 lúc 13:18

\(Ta.có:\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\ Mà.\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}\\ \Rightarrow\widehat{ABM}=\widehat{ACN}\\ Xét.\Delta ABM.và.\Delta ACN.có:\\ MB=MC\\ \widehat{ABM}=\widehat{ACN}\left(chứng.minh.trên\right)\\ AB=AC\left(\Delta ABC.cân\right)\\ Vậy.\Delta ABM=\Delta ACN\left(c.g.c\right)\\ \Rightarrow AM=AN\left(2.cạnh.tương.ứng\right)\\ \widehat{M}=\widehat{N}\left(2.góc.t.ứng\right)\)   

\(b,Xét.\Delta MBH.và.\Delta NCK.có:\\ \widehat{BHM}=\widehat{CKN}=90^0\\ MB=MC\\ \widehat{M}=\widehat{N}\left(cmt\right)\\ Vậy.\Delta MBH=\Delta NCK\left(cạnh.huyền,góc.nhọn\right)\\ \Rightarrow\widehat{HBM}=\widehat{KCN}\left(2.góc.t.ứng\right)\\ \Rightarrow MH=KN\left(2.cạnh.t.ứng\right)\\ Mà.AM=AH+HM;AN=AK+KN\\ \Rightarrow AH=AK\)  

\(c,Ta.có:\widehat{HBM}=\widehat{KCN}\left(chứng.minh.trên\left(cmt\right)\right)\\ Mà.\widehat{HBM}=\widehat{CBO}\left(2.góc.đối.đỉnh\right)\\ \widehat{KCN}=\widehat{BCO}\left(2.góc.đối.đỉnh\right)\\ \Rightarrow\widehat{CBO}=\widehat{BCO}\\ \Rightarrow\Delta OBC.là.\Delta cân\)

Anh Bao
Xem chi tiết
Buddy
3 tháng 3 2021 lúc 20:41

Violympic toán 7

tt7a
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 9:04

a: XétΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK