Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia
CB lấy điểm N sao cho BM = CN.
a) CMR tam giác AMN là tam giác cân
b) Kẻ BH vuông góc với AM (H thuộc AM), kẻ CK vuông góc với AN (K thuộc AN). CMR : BH = CK.
c) CMR: AH = AK.
d) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao ?
e) Cho tam giác ABH vuông tại H, biết AB = 13 cm, AH = 12 cm.Tính độ dài cạnh BH ?
f) Chứng minh HK // MN
g) Gọi I là trung điểm của BC. Chứng minh 3 điểm A, O, I thẳng hàng.
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
c: Ta có: ΔABH=ΔACK
nên AH=AK
d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔHBM=ΔKCN
Suy ra: \(\widehat{HBM}=\widehat{KCN}\)
mà \(\widehat{HBM}=\widehat{OBC}\)
và \(\widehat{KCN}=\widehat{OCB}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O