Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Quỳnh Anhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 20:34

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=BH\cdot CH\)

\(\Leftrightarrow AH^2=9\cdot16=144\)

hay AH=12(cm)

Xét tứ giác ADHE có 

\(\widehat{EAD}=90^0\)

\(\widehat{ADH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=DE(Hai đường chéo)

mà AH=12(cm)

nên DE=12cm

Ngưu Kim
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Trần Thành Đạt
20 tháng 4 2017 lúc 17:18

a) Hai tam giác vuông ABH và ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAKIAK^=ˆIAHIAH^

Vậy AI là tia phân giác của góc A.

Nguyễn Thị Thảo
20 tháng 4 2017 lúc 22:32

a) Hai tam giác vuông ABH và ACH có:

Tam giác ABC cân tại A ⇒ AB = AC

AH cạnh chung.

Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)

Suy ra HB = HC

b)∆ABH = ∆ACH (Câu a)

Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)

#𝒌𝒂𝒎𝒊ㅤ♪
Xem chi tiết
Không cân biết tên
19 tháng 1 2019 lúc 10:04

△ABC" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml"> vuông tại A nên 

⇒△MAB;△MAC" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml"> cùng cân tại M

⇒MD" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml"> vừa là đường cao, vừa là đường phân giác trong .

⇒△BMD=△AMD(c.g.c)⇒DBM^=DAM^=90∘→DB⊥BC" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

△AME=△CME(c.g.c)→ECM^=MAE^=90∘→CE⊥BC" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

DB//CE" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

BD=DA;CE=AE→" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml"> đpcm

bẠN kham khỏa nhé.

Duy Khánh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:04

Gọi D là hình chiếu vuông góc của S lên (ABC)

\(SD\perp\left(ABC\right)\Rightarrow SD\perp AB\) , mà \(AB\perp SA\left(gt\right)\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp AD\)

\(\Rightarrow AD||BC\)

Tương tự ta có: \(BC\perp\left(SCD\right)\Rightarrow BC\perp CD\Rightarrow CD||AB\)

\(\Rightarrow\) Tứ giác ABCD là hình vuông

\(\Rightarrow BD=a\sqrt{2}\)

\(SD=\sqrt{SB^2-BD^2}=a\sqrt{2}\)

Gọi P là trung điểm AD \(\Rightarrow MP\) là đường trung bình tam giác SAD

\(\Rightarrow\left\{{}\begin{matrix}MP=\dfrac{1}{2}SD=\dfrac{a\sqrt{2}}{2}\\MP||SD\Rightarrow MP\perp\left(ABC\right)\end{matrix}\right.\)

\(\Rightarrow\alpha=\widehat{MNP}\)

\(cos\alpha=\dfrac{NP}{MN}=\dfrac{NP}{\sqrt{NP^2+MP^2}}=\dfrac{a}{\sqrt{a^2+\dfrac{a^2}{2}}}=\dfrac{\sqrt{6}}{3}\)

TXT Channel Funfun
Xem chi tiết