tim nghiem cua phuong trinh A=x^2+y^2-4y+2x+5
tim nghiem tong quat cua phuong trinh sau:
a)3x+y=3
b)2x-4y=4
c)6x+7y=7
d)\(\frac{1}{2}x+\frac{3}{2}y=\frac{5}{2}\)
a) Cho phuong trinh x2 +mx+1=0. Tim dieu kien cua m de phuong trinh co nghiem kep. Tinh nghiem kep do
b) Khong giai phuong trinh, chung to phuong trinh 2x2 - 3x - 5 = 0co 2 nghiem phan biet x1 , x2. Tinh ( x1 - x2 )
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)
tim gia tri cua m,biet rang 1 trong 2 phuong trinh sau day nhan x=-1 lam nghiem,phuong trinh con lai nhan x=5 lam nghiem : (1-x)(x^2+1)=0 va (2x^2+7)(8-mx)=0
(1-x)(x^2+1)=0 chắc chắn sẽ không nhận x=-1 hoặc x=5 làm nghiệm rồi
(2x^2+7)(8-mx)=0
=>8-mx=0
Nếu 8-mx=0 nhận x=-1 làm nghiệm thì m+8=0
=>m=-8
Nếu 8-mx=0 nhận x=5 làm nghiệm thì 8-5m=0
=>m=8/5
Tim nghiem nguyen cua phuong trinh
a) \(x^2+y^2-x-4y-2=0\)
b)\(x^2+y^2=x+y+8\)
cho phuong trinh (2x+5)(x-2)=11 (1)
(x+1)(2x-5)=-3 (2)
trong cac so 1;-1;2;-2;5/2;-5/2 thi so nao la nghiem cua phuong trinh (1), so nao la nghiem cua phuong trinh (2)
Ta có:
(1) ⇔ 2x2 + x - 10 = 11 ⇔ 2x2 + x - 21 = 0 ⇔ 2x2 - 7x + 6x - 21 = 0
⇔ x(2x - 7) + 3(2x - 7) = 0 ⇔ (2x - 7)(x + 3) = 0
\(\text{⇔}\left[{}\begin{matrix}2x-7=0\\x+3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\frac{7}{2}\\x=-3\end{matrix}\right.\)
Vậy trong các số 1; -1 ; 2 ; -2 ; \(\frac{5}{2};-\frac{5}{2}\) thì không có số nào là nghiệm của phương trình (1)
Tương tự, ta có:
(2) ⇔ 2x2 - 3x - 5 = -3 ⇔ 2x2 - 3x - 2 = 0 ⇔ 2x2 - 4x + x - 2 = 0
⇔ 2x(x - 2) + (x - 2) = 0 ⇔ (x - 2)(2x + 1) = 0
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\2x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy trong các số trên thì 2 là nghiệm của phương trình.
Trong bài này còn cách là thay từng số vào phương trình, nhưng cách này hơi lâu.
Chúc bạn học tốt@@
tim nghiem cua phuong trinh
(2x-30)2-4x2-297=0
Nghiem x>1 cua da thuc
(9x-7)2-(5-2x)2
tim tat ca cac nghiem nguyen cua phuong trinh :
\(x^2y^2-2x\left(y+2\right)+4=0\)
Ta có:
\(x^2y^2-2x\left(y+2\right)+4=0\)
\(\Leftrightarrow x^2y^2-2xy+4=4x\)
\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)
Mà \(\left(xy-1\right)^2+3>0\)
Nên 4x>0
x>0
Ta có:
\(x^2y^2-2x\left(y+2\right)+4=0\)
\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)
Mà \(x^2y^2+4>0\forall x,y\)
Nên \(2x\left(y+2\right)>0\)
Mặt khác x>0
nên y+2>0
=> y>-2 (1)
Áp dụng bđt Cosi ta có:
\(x^2y^2+4\ge4xy\)
Mà \(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)
Nên \(2x\left(y+2\right)\ge4xy\)
\(\Rightarrow y+2\ge2y\)
\(\Leftrightarrow y\le2\) (2)
Do y \(\in Z\) và ta đã có (1), (2)
Nên \(y\in\left\{-1;0;1;2\right\}\)
Th1: y = -1
\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)
Th2: y = 0
\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Rightarrow x=2\) (nhận)
Th3: y = 1
\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)
\(\Leftrightarrow x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2=5\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)
Loại do x \(\in Z\)
Th4: y = 2
\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)
Loại do x \(\in Z\)
Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)
4 Th sai cả rồi
do mình thế ngu
ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé
Th1 và Th3 thì mình làm đúng rồi
Th2 : y=0
\(\Rightarrow-2x\left(0+2\right)+4=0\)
\(\Leftrightarrow4x=4\Leftrightarrow x=1\) (nhận)
Th4: y=2
\(\Rightarrow4x^2-2x\left(2+2\right)+4=0\)
\(\Leftrightarrow4x^2-8x+4=0\)
\(\Rightarrow x=1\) (nhận)
Vậy \(\left(x;y\right)\in\left\{\left(1;0\right),\left(1;2\right)\right\}\)
Cho he phuong trinh: \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3.\left(m+2\right)\end{matrix}\right.\)
Goi (x;y) la nghiem cua he phuong trinh. Tim m de \(x^2+y^2\) dat GTNN
\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(\Rightarrow x^2+y^2=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
\(\Rightarrow\left(x^2+y^2\right)_{min}=\dfrac{9}{2}\) khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
tim nghiem nguyen cua phuong trinh
(y+1)^4+y^4=(x+1)^2+x^2