Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vo Thi Minh Dao

tim tat ca cac nghiem nguyen cua phuong trinh :

\(x^2y^2-2x\left(y+2\right)+4=0\)

Ma Sói
25 tháng 11 2018 lúc 15:10

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2-2xy+4=4x\)

\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)

\(\left(xy-1\right)^2+3>0\)

Nên 4x>0

x>0

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

\(x^2y^2+4>0\forall x,y\)

Nên \(2x\left(y+2\right)>0\)

Mặt khác x>0

nên y+2>0

=> y>-2 (1)

Áp dụng bđt Cosi ta có:

\(x^2y^2+4\ge4xy\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

Nên \(2x\left(y+2\right)\ge4xy\)

\(\Rightarrow y+2\ge2y\)

\(\Leftrightarrow y\le2\) (2)

Do y \(\in Z\) và ta đã có (1), (2)

Nên \(y\in\left\{-1;0;1;2\right\}\)

Th1: y = -1

\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)

\(\Leftrightarrow x^2-2x+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)

Th2: y = 0

\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Rightarrow x=2\) (nhận)

Th3: y = 1

\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)

\(\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Th4: y = 2

\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)

Ma Sói
25 tháng 11 2018 lúc 15:22

4 Th sai cả rồi

do mình thế ngu

ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé

Ma Sói
25 tháng 11 2018 lúc 15:27

Th1 và Th3 thì mình làm đúng rồi

Th2 : y=0

\(\Rightarrow-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow4x=4\Leftrightarrow x=1\) (nhận)

Th4: y=2

\(\Rightarrow4x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow4x^2-8x+4=0\)

\(\Rightarrow x=1\) (nhận)

Vậy \(\left(x;y\right)\in\left\{\left(1;0\right),\left(1;2\right)\right\}\)


Các câu hỏi tương tự
Nguyễn Minh Quý
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Kathy Nguyễn
Xem chi tiết
người vô hình
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
phạm minh thông
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
nam do
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết