Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen the tien thang
Xem chi tiết
Trần Thị Loan
1 tháng 6 2015 lúc 21:40

+)  Áp dụng BĐT Bu nhia có:

(x + y)2 = (x .1 + y .1)2 \(\le\) (x2 + y2). (12 + 12

=> 1\(\le\)  2.(x2 + y2) => x2 + y2 \(\ge\) 1/2 

Min A = 1/2 khi x  = y = 1/2

+) A = x2 + y2 = (x+y)2 - 2xy \(\le\)  (x+y) = 1 (Vì x; y \(\ge\) 0 và  x+y=1 )

=> Max A = 1 khi x.y = 0 <=> x = 0 hoặc y = 0

Vậy Max A = 1 khi x = 0; y = 1 hoặc x = 1; y = 0

Dương Thị Xuân Tình
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết
Nguyễn Quỳnh Trang
12 tháng 4 2020 lúc 10:11

Câu 3 là (1+1/x)(1+1/y) nha

Mà ko cần làm câu này đâu giúp mình 2 câu 1 và 2 thôi nhá

Nguyễn Việt Lâm
12 tháng 4 2020 lúc 15:26

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)

Nguyễn Việt Lâm
12 tháng 4 2020 lúc 15:29

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

Me me biggg boy
Xem chi tiết
Hồ Lê Thiên Đức
24 tháng 11 2021 lúc 17:18

Ta có x2+y2 / x-y = x2-2xy+y2+2xy / x-y

                            = (x-y)2+2xy / x-y

Mà xy = 1 => 2xy = 2. Thay vào, ta có

(x-y)2+2xy / x-y = (x-y)2+2 / x-y = (x-y)2 / x-y + 2 / x-y

                                                  = x-y + 2 / x-y

Áp dụng BĐT Cauchy, ta có

x-y + 2 / x-y ≥ 2.√(x-y).2 / x-y] = 2.√2 = (√2)3

Vậy Min A = (√2)3

điên123
Xem chi tiết
Trí Tiên
28 tháng 2 2020 lúc 13:50

1) Tìm GTNN : 

Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

2) Áp dụng BĐT Svacxo ta có :

\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa
Đặng Tú Phương
28 tháng 2 2020 lúc 13:54

2/ Áp dụng bđt Cô- si cho 2 số dương ta có :

\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)

Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> a=b=c=1 

Khách vãng lai đã xóa
Đặng Tú Phương
28 tháng 2 2020 lúc 14:12

\(A=\frac{x}{y+1}+\frac{y}{x+1}=\frac{x\left(x+1\right)+\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}\)

\(=\frac{x^2+x+y^2+y}{\left(x+1\right)\left(y+1\right)}=\frac{\left(x+y\right)^2-2xy+1}{xy+x+y+1}=\frac{-2xy+2}{xy+2}\)

\(=\frac{-2\left(xy+2\right)+6}{xy+2}=-2+\frac{6}{xy+2}\)

vì x,y>0 \(\Rightarrow xy\ge0\Rightarrow xy+2\ge2\Rightarrow\frac{6}{xy+2}\le\frac{6}{2}\)

\(\Rightarrow A\le-2+\frac{6}{2}=1\)

\(\Rightarrow maxA=1\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\Rightarrow maxA=1\)<=> x=0 và y=1 hoặc x=1 và y=0

Áp dụng bđt (a+b)2>=4ab ta có:

\(1^2=\left(x+y\right)^2\ge4xy\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow xy+2\le\frac{1}{4}+2=\frac{9}{4}\)

\(\Rightarrow A\ge-2+6:\frac{9}{4}=\frac{2}{3}\)

\(\Rightarrow minA=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)

Khách vãng lai đã xóa
Lê Quỳnh Trang
Xem chi tiết
Võ Trường Giang
10 tháng 4 2017 lúc 14:32

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

Võ Trường Giang
10 tháng 4 2017 lúc 14:50

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 0:21

Do \(\left\{{}\begin{matrix}x\ge-1\Rightarrow x+1\ge0\\\sqrt{x^2+1}>0\end{matrix}\right.\) \(\Rightarrow y\ge0\)

\(y_{min}=0\) khi \(x=-1\)

Lại có: \(y^2=\dfrac{\left(x+1\right)^2}{x^2+1}=\dfrac{x^2+2x+1}{x^2+1}=\dfrac{2\left(x^2+1\right)-x^2+2x-1}{x^2+1}=2-\dfrac{\left(x-1\right)^2}{x^2+1}\le2\)

\(\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\) khi \(x=1\)

Do Dang Minh
Xem chi tiết
Hung Trinh Ngoc
7 tháng 10 2017 lúc 21:47

\(2xy\le x^2+y^2\le2\\ \)

\(\Rightarrow xy\le1\)

A=\(\frac{1+x+1+y}{\left(x+1\right)\left(y+1\right)}=\frac{2+x+y}{1+xy+x+y}\)

\(xy\le1\Rightarrow xy+1+x+y\le2+x+y\)

\(\Rightarrow A\ge\frac{2+x+y}{2+x+y}=1\)

Vậy A Nhỏ nhất =1 khi x=y=1

sky12
Xem chi tiết