Ta có x2+y2 / x-y = x2-2xy+y2+2xy / x-y
= (x-y)2+2xy / x-y
Mà xy = 1 => 2xy = 2. Thay vào, ta có
(x-y)2+2xy / x-y = (x-y)2+2 / x-y = (x-y)2 / x-y + 2 / x-y
= x-y + 2 / x-y
Áp dụng BĐT Cauchy, ta có
x-y + 2 / x-y ≥ 2.√(x-y).2 / x-y] = 2.√2 = (√2)3
Vậy Min A = (√2)3