Ôn tập chương II

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
sky12

Cho cặp số (\(x;y\)) thỏa mãn hệ bất phương trình

\(\left\{{}\begin{matrix}2y\ge x\\y\le3x\\2x+3y\le12\end{matrix}\right.\)

Tìm GTLN và GTNN của F(\(x;y\)) = \(x+y-2\)

Ta có: \(\begin{cases}2y\ge x\\ y\le3x\\ 2x+3y\le12\end{cases}\left(I\right)\)

=>\(\begin{cases}x\le2y\\ 3x\ge y\\ 2x+3y\le12\end{cases}\Rightarrow\begin{cases}x-2y\le0\left(1\right)\\ 3x-y\ge0\left(2\right)\\ 2x+3y\le12\left(3\right)\end{cases}\)

Thay x=0 và y=0 vào (1), ta được:

\(0-2\cdot0\le0\)

=>0<=0(đúng)

=>MIền nghiệm của bất phương trình (1) sẽ là nửa mặt phẳng vừa chứa biên vừa chứa điểm O(0;0) của đường thẳng x-2y=0(4)

Thay x=0 và y=0 vào 3x-y>=0, ta được:

3*0-0>=0

=>0>=0(đúng)

=>MIền nghiệm của bất phương trình (2) sẽ là nửa mặt phẳng vừa chứa biên vừa chứa điểm O(0;0) của đường thẳng 3x-y=0(5)

Thay x=0 và y=0 vào 2x+3y<=12, ta được:

2*0+3*0<=12

=>0<=12(đúng)

=>MIền nghiệm của bất phương trình (3) sẽ là nửa mặt phẳng vừa chứa biên vừa chứa điểm O(0;0) của đường thẳng 2x+3y=12(6)

Từ (4),(5),(6) suy ra miền nghiệm của hệ (I) là:

image.png

=>Miền nghiệm của hệ (I) là các điểm A,B,O; với O là gốc tọa độ; A là giao điểm của hai đường thẳng x-2y=0 và 2x+3y=12; B là giao điểm của 3x-y=0 và 2x+3y=12

=>A(24/7;12/7); O(0;0); B(12/11;36/11)

Khi x=0 và y=0 thì F=0+0-2=-2

Khi \(x=\frac{24}{7};y=\frac{12}{7}\) thì \(F=\frac{24}{7}+\frac{12}{7}-2=\frac{36}{7}-2=\frac{36}{7}-\frac{14}{7}=\frac{22}{7}\)

Khi \(x=\frac{12}{11};y=\frac{36}{11}\) thì \(F=\frac{12}{11}+\frac{36}{11}-2=\frac{12}{11}+\frac{14}{11}=\frac{26}{11}\)

=>GTNN của F là -2 khi x=0; y=0

GTLN của F là 22/7 khi x=24/7;y=12/7


Các câu hỏi tương tự
Nguyễn Hà Mi
Xem chi tiết
Phương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Linh Bui
Xem chi tiết
Thư Đoan
Xem chi tiết
Bảo Bình
Xem chi tiết
phanh huỳnh bảo châu
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết