Cho hàm số :
\(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2}{3}x^2-\dfrac{8}{3}x+2;\left(x>0\right)\\2x+2;\left(x\le0\right)\end{matrix}\right.\)
Vẽ đồ thị của hàm số \(y=\left|f\left(x\right)\right|\) ?
Bài 1: Xét tính chẵn lẻ của hàm số :y=|x3-x|
Bài 2: ho hàm số y= f(x)=\(\left\{{}\begin{matrix}x-3,x\ge1\\2x^2-x-3,x< 1\end{matrix}\right.\) có đồ thị (C)
a) Tính f(4),f(-1)
b) Điểm nào sau đấy thuộc (c): A(4:1), b(-1,-4)
Bài 3: Cho tập hợp A= \(\left\{n\in◻\cdot\left|\right|9⋮\right\}\) B = (0;10)
a)Liệt kê các phần tử của A
b) Tính \(A\cap B\), \(A\cup B\)
(mình đag cần rất gấp)
Tìm tập xác định của các hàm số :
a. \(y=\dfrac{2}{x+1}+\sqrt{x+3}\)
b. \(y=\sqrt{2-3x}-\dfrac{1}{\sqrt{1-2x}}\)
c. \(y=\left\{{}\begin{matrix}\dfrac{1}{x+3};\left(x\ge1\right)\\\sqrt{2-x};\left(x< 1\right)\end{matrix}\right.\)
Khảo sát sự biến thiên và vẽ dồ thị các hàm số sau
1 , y = \(x\left|x-2\right|+1\)
2 , y = \(\left|x^2-2x+3\right|\)
3 , y = \(x^2-4\left|x\right|+2\)
4 , y= \(x^2+x\left|x+2\right|-4\)
5 , y = \(\left(x+2\right)\left(\left|x\right|-1\right)\)
6 , y = \(\left\{{}\begin{matrix}2xneux< 0\\x^2-xneux\ge0\end{matrix}\right.\)
7 , y = \(x\left|x\right|-2x-1\)
\(f\left(x\right)\left\{{}\begin{matrix}2x-1,x>2\\1-3x,x< -1\\-x^2+x,-1\le x\le2\end{matrix}\right.\)
a) khảo sát và vẽ đồ thị.
b) dựa vào đồ thị tìm m để phương trình : f(x)=m-2 có 3 nghiệm phân biệt.
Tìm tập xác định của hàm số y=\(\left\{{}\begin{matrix}\frac{1}{x-3}với...x\ge1\\\sqrt{2-x}với...x< 1\end{matrix}\right.\)
tập nghiệm của hệ bất phương trình \(\left\{{}\begin{matrix}x^2-7x+6< 0\\\left|2x-1\right|< 3\end{matrix}\right.\)
giai cac he phuong trinh sau
15) \(\left\{{}\begin{matrix}3x+2y=7\\x^2+y^2-7x+xy=0\end{matrix}\right.\)
16)\(\left\{{}\begin{matrix}2x+3y=5\\x^2+xy+y^2-4x=-1\end{matrix}\right.\)
>< giúp với ạ
\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\)
\(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\)
Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y)
\(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\)
Theo tính chất đường phân giác ta có:
\(\frac{DB}{DC}=\frac{AB}{AC}\)
\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{AB}{AC}\)
\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{3}{4}\)
\(\Rightarrow\overrightarrow{DB}=-\frac{3}{4}\overrightarrow{DC}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{4}-x=-\frac{3}{4}\left(2-x\right)\\-y=-\frac{3}{4}\left(-y\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(\Rightarrow D\left(1;0\right)\)
Gọi BJ là đường phân giác trong góc B với J thược AD. Gọi toạ độ điểm J là J(x;y).
\(\overrightarrow{BA}=\left(-\frac{9}{4};3\right)\Rightarrow AB=\frac{15}{4}\)
\(\overrightarrow{BD}=\left(\frac{3}{4};0\right)\Rightarrow BD=\frac{3}{4}\)
Theo tính chất đường phân giác góc B ta có:
\(\frac{JA}{JD}=\frac{BA}{BD}\)
\(\Rightarrow\)\(\frac{\overrightarrow{JA}}{\overrightarrow{JD}}=-5\)
\(\Rightarrow\overrightarrow{JA}=-5\overrightarrow{JD}\)
\(\Rightarrow\left\{{}\begin{matrix}-2-x=-5\left(1-x\right)\\3-y=-5\left(-y\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\end{matrix}\right.\)
\(J\left(\frac{1}{2};\frac{1}{2}\right)\)
Vì J là giao điểm của hai đường phân giác trong góc A và góc B nên J là tâm đường tròn nội tiếp tam giác ABC