\(\left\{{}\begin{matrix}x^2=3x+2y\left(1\right)\\y^2=3y+2x\left(2\right)\end{matrix}\right.\)
Trừ theo vế 2 pt ta được :
\(x^2-y^2=3x+2y-3y-2x\)
\(\Leftrightarrow x^2-y^2=x-y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y-1=0\end{matrix}\right.\)
TH1: \(x-y=0\Leftrightarrow x=y\)
\(\left(1\right)\Leftrightarrow x^2=3x+2x\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\end{matrix}\right.\)
TH2: \(x+y-1=0\)
\(\Leftrightarrow x=1-y\)
\(\left(1\right)\Leftrightarrow\left(1-y\right)^2=3\left(1-y\right)+2y\)
\(\Leftrightarrow y^2-y-2=0\)
\(\Leftrightarrow\left(y-2\right)\left(y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy....