Những câu hỏi liên quan
tth_new
Xem chi tiết

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

Bình luận (0)
Khôi Bùi
8 tháng 2 2019 lúc 20:21

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

Bình luận (0)
Phan Nghĩa
23 tháng 8 2020 lúc 21:22

e cũng có 1 vài cách chứng minh khá là cổ điển ạ !

Sử dụng BĐT AM-GM ta có :

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=2.\frac{a}{2}=a\)

Bằng cách chứng minh tương tự :

\(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b;\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng theo vế các bđt cùng chiều ta được :

\(\frac{a^2}{c+b}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{2\left(a+b+c\right)}{4}\ge a+b+c\)

\(< =>\frac{a^2}{b+c}+\frac{a}{2}+\frac{b^2}{a+c}+\frac{b}{2}+\frac{c^2}{a+b}+\frac{c}{2}\ge a+b+c\)

\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c\ge\frac{3}{2}\left(a+b+c\right)\)

\(< =>\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{a+c}+\frac{c\left(a+b+c\right)}{b+a}\ge\frac{3}{2}\left(a+b+c\right)\)

\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(Q.E.D\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Incursion_03
Xem chi tiết
Incursion_03
21 tháng 6 2019 lúc 20:54

34, Quảng Ninh

Cho x;y;z > 0 thỏa mãn x + y + z < 1

Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

Ta có bđt sau : \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)

Áp dụng ta được \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

                                \(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{2017}{xy+yz+zx}\)

                                \(\ge\frac{\left(1+2\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}+\frac{2017}{\frac{\left(x+y+z\right)^2}{3}}\)

                               \(=\frac{9}{\left(x+y+z\right)^2}+\frac{6051}{\left(x+y+z\right)^2}\)

                                \(=\frac{6060}{\left(x+y+z\right)^2}\ge\frac{6060}{1}=6060\)

Dấu "=" tại x = y = z = 1/3

Bình luận (0)
Incursion_03
21 tháng 6 2019 lúc 21:14

39, Chuyên Hưng Yên

Với x;y là các số thực thỏa mãn \(\left(x+2\right)\left(y-1\right)=\frac{9}{4}\)

Tìm \(A_{min}=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

Ta có \(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

              \(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt  \(\hept{\begin{cases}x+1=a\\y-2=b\end{cases}}\)

Thì \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\)và giả thiết đã cho trở thành \(\left(a+1\right)\left(b+1\right)=\frac{9}{2}\)

Ta có bất đẳng thức \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(1)

Thật vậy

 \(\left(1\right)\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

         \(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt luôn đúng

*Nếu xz + yt > 0 thì bđt tương đương với

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

 \(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(Luôn đúng)

Vậy bđt (1) được chứng minh

Áp dụng (1) ta được \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)

                                                                                              \(=\sqrt{\left(a^2+b^2\right)^2+4}\)

Ta có \(\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b+1=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b=\frac{5}{4}\)

Áp dụng bđt Cô-si có \(a^2+b^2\ge2ab\)

                                   \(2\left(a^2+\frac{1}{4}\right)\ge2a\)

                                  \(2\left(b^2+\frac{1}{4}\right)\ge2b\)

Cộng 3 vế vào được

\(3\left(a^2+b^2\right)+1\ge2\left(ab+a+b\right)=\frac{5}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Khi đó \(A\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{3}\)

Dấu ''=" tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x+1=\frac{1}{2}\\y-2=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{5}{2}\end{cases}}\)

Bình luận (0)
Incursion_03
21 tháng 6 2019 lúc 21:41

38, Hưng Yên

Cho x;y;z > 0 thỏa mãn \(x^2+y^2+z^2=3xyz\)

Tìm \(P_{max}=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)(Chỗ này phân số thứ 2 đề ở tử là y2 không phải y4 cô nhé )

                         Giải

Áp dụng bđt Cô-si có

\(x^4+yz\ge2x^2\sqrt{yz}\)

\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)

Áp dụng bđt Cô-si \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

                    \(\Rightarrow\frac{1}{2\sqrt{yz}}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{1}{2\sqrt{yz}}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự \(\frac{y^2}{y^4+zx}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{z}\right)\) 

                 \(\frac{z^2}{z^4+xy}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Khi đó \(VT\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

                                                                                                       \(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\)

                                                                                                       \(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\)

                                                                                                        \(=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Dấu "=" tại x = y = z =1

Bình luận (0)
Nguyễn Thiều Công Thành
Xem chi tiết
Lưu gia Huy
28 tháng 8 2017 lúc 9:02

Bạn làm đúng rồi

Bình luận (0)
Lưu gia Huy
28 tháng 8 2017 lúc 9:02

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu

Bình luận (0)
tth_new
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 5 2020 lúc 23:33

Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)

Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs

Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
17 tháng 5 2020 lúc 6:45

zZz Cool Kid_new zZz cách bác thì nhất rồi cách t thì chả khá gì a Thắng bên AoPS t nhớ có sol dùng Vacs lâu rồi mà

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
17 tháng 5 2020 lúc 6:47

https://artofproblemsolving.com/community/c6h1900105p12986856 đây là sol dùng Vacs của teomihai, có từ 20/8/2019

Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 22:21

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
11 tháng 2 2020 lúc 21:42
Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Đanh Fuck Boy :))
Xem chi tiết
Tuấn
Xem chi tiết
Phan Nghĩa
26 tháng 9 2017 lúc 15:03

Tuấn you xem thế này có đúng ko?

Bài 1:

Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)
=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]
vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc

Bình luận (0)
Tuấn
26 tháng 9 2017 lúc 15:12

bạn xem lại đề bài nhé

nó cần c/m

\(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)

chứ không phải

\(a^2+b^2+c^2\ge ab+ac+bc\)

bạn hãy thử lại sau nhé

Bình luận (0)
Đỗ Nhật Linh
Xem chi tiết
nguyen thi nhu quynh
28 tháng 12 2017 lúc 17:41

thế mà bảo toán lớp 1 

Bình luận (0)
vũ tiền châu
29 tháng 12 2017 lúc 20:24

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

Bình luận (0)
Đỗ Phương Hiền
29 tháng 12 2017 lúc 20:28

Ko phải toán lớp 1ak

Bình luận (0)