cho ab/b=ca/c=ca/a
CMR:(abc)123=111123.a40.b41.c42
\(Cho\frac{ab}{b}=\frac{bc}{a}=\frac{ca}{c}.CMR:\left(abc\right)^{123}\cdot a^{40}\cdot b^{41}\cdot c^{42}\)
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{c}\)
C/M\(\left(abc\right)^{123}=111^{123}.a^{20}.b^{11}.c^{2017}\)
Cho:\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)
CMR(\(\overline{abc}\))123=111123\(\cdot a^{40}\cdot b^{41}\cdot c^{42}\)
Ta có:
\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)
\(\Rightarrow\dfrac{10a}{b}+\dfrac{b}{b}=\dfrac{10b}{c}+\dfrac{c}{c}=\dfrac{10c}{a}+\dfrac{a}{a}\)
\(\Rightarrow\dfrac{10a}{b}+1=\dfrac{10b}{c}+1=\dfrac{10c}{a}+1\)
\(\Rightarrow\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}=\dfrac{10a+10b+10c}{b+c+a}=\dfrac{10\left(a+b+c\right)}{a+b+c}=10\)
\(\Rightarrow\left\{{}\begin{matrix}10a=10b\\10b=10c\\10c=10a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow\left(\overline{abc}\right)^{123}=\left(\overline{aaa}\right)^{123}\)(1)
\(\Rightarrow c=111^{123}.a^{40}.a^{41}.a^{42}=111^{123}.a^{123}=\left(111.a\right)^{123}=\left(\overline{aaa}\right)^{123}\)(2)
Từ (1) và (2) suy ra: \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Cho biết
\(\frac{ac}{b}=\frac{bc}{c}=\frac{ca}{a}\)
Chứng minh
\(abc^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)
11. Cho tam giác ABC vuông tại A và có AB = C , AC =b . Tính vectơ BA. Vectơ BC
12. Cho tg ABC có AB =2cm , BC = 3cm , CA= 5cm. Tính vectơ CA. Vectơ CB
13. Cho tg ABC có BC =a , CA = b , AB =c. Tính P = ( vectơ AB + vectơ AC). Vectơ BC
14. Cho tg ABC có BC =a , CA = b , AB =c. Gọi M là trung điểm cạnh BC. Tính vectơ AM. Vectơ BC
Bài 1: Cho biết \(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)
CM: (abc)123 = 111123 . a40 . b41 . c42
Cho tam giác ABC có BC=a, AC=b, AB=c thoả mãn: ab/b+c+bc/c+a+ca/a+b=ca/b+c+ab/c+a+bc/a+b. Chứng minh tg ABC là tam giác cân
Câu 12: Cho tam giác ABC có góc A bằng 450 ; góc B bằng 750. Ta có:
A. AB< BC < CA B. BC < AB < AC
C. CA < AB < BC D. CA < BC< AB