Chứng minh: a4 + b4 + c4 = 2 (ab + bc + ac)2.. Biết rằng a + b + c = 0
cho a + b + c = 0. Chứng minh đẳng thức:
a) a4 + b4 + c4 = 2(a2b2 + b2c2 +c2a2); b) a4 + b4 + c4 = 2(ab + bc + ca)2;
a4 + b4 + c4 =(a2+b2+c2)2 /2
b)với a+b+c=0
CMR a4+b4+c4=2(ab+bc+ca)2
theo bài ta có:
a + b + c = 0
=> a = -(b + c)
=> a2 = [-(b + c)]2
=> a2 = b2 + 2bc + c2
=> a2 - b2 - c2 = 2bc
=> ( a2 - b2 - c2)2 = (2bc)2
=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2
=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
=> 2(a4 + b4 + c4) = 1
=> a4 + b4 + c4 = \(\dfrac{1}{2}\)
Đề viết sai rồi bạn
Với a+b+c=0
CMR : a4+b4+c4=2(ab+bc+ac)2
Tính giá trị của biểu thức a4 + b4 + c4, biết rằng a + b + c =1,ab+bc+ca=-1 và abc=-1
Lời giải:
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[(a+b+c)^2-2(ab+bc+ac)]^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$
$=[1^2-2(-1)]^2-2[(-1)^2-2(-1).1]=3$
Tính giá trị của biểu thức :a4+b4+c4 biết rằng a+b+c=0 và:
a,a2+b2+c2=2 ; b,a2+b2+c2=1
mik cần gấp!!!
Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1
⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1
Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4
⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2
+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự
cho a,b,c lon hon bang 0 va ab+bc+ca lon hon bang 3.c/m a4/b+3c +b4/c+3a +c4/a+3b
K=a√a4+7+b√b4+7+c√c4+7K=aa4+7+bb4+7+cc4+7
a,b,c>0
ab+bc+ca=3ab+bc+ca=3
tìm max K ?
1. a3 + b3 + c3 ≥ a2 . căn (bc) + b2 .căn (ac) + c2 .căn (ab)
2. (a2 + b2 + c2)(1/(a +b ) + 1/(b+c) +1/(a+c) ) ≥ (3/2)(a + b+c)
3. a4 + b4 +c4 ≥ (a + b+c)abc
1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 )
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi )
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi )
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Dấu " = " xảy ra khi a = b = c.
2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 )
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được :
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)]
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c)
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca.
BĐT cuối đúng nên => đpcm !
Dấu " = " xảy ra khi a = b = c.
3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4)
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 )
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi )
= 2.abc(a + b + c)
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc
Dấu " = " xảy ra khi a = b = c.
Với a,b,c dương (không phải độ dài 3 cạnh tam giác)
Chứng minh a4+b4+c4-2a2b2-2b2c2-2c2a2 < 0
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo
Cho 4 số a,b,c,d. Chứng minh : a4 + b4 + c4 + d4 >= a^2bc + b^2cd + c^2da + d^2ab
Áp dụng BĐT Cauchy ta có:
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)
Tương tự ta cũng có:
\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)
\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)
\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)
Cộng theo vế các BĐT trên, ta được:
\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)
Dấu "=" xảy ra.....
Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))
Tính góc C của tam giác ABC biết c4 -2(a2+b2)c2+a4+a2b2 +b4=0
Lời giải:
PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$
$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$
$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$
$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$
Áp dụng định lý cosin:
Nếu $a^2+b^2-c^2-ab=0$
$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$
$\Rightarrow \widehat{C}=60^0$
Nếu $a^2+b^2-c^2+ab=0$
$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$