Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiều Bích Huyền
Xem chi tiết
Phan Thị Kiều Nga
Xem chi tiết
saadaa
17 tháng 8 2016 lúc 21:04

1,x=6

3,x=-9

Đồng Thanh Tuấn
Xem chi tiết
Đồng Thanh Tuấn
8 tháng 10 2016 lúc 20:40

nhanh giùm mình cái

NixxGamingVN
30 tháng 10 2020 lúc 20:44

3 nhé bạn

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2019 lúc 13:44

Ta có 3 x + 3 - x 2 = 9 x + 9 - x + 2 = 23 + 2 = 25  

Suy ra 3 x + 3 - x = 5  

Do đó  P = 5 + 3 x + 3 - x 1 - 3 x - 3 - x = 5 + 5 1 - 5 = - 5 2

Đáp án A

Quỳnh Bùi
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 1:04

a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

Nguyễn Quang Tùng
Xem chi tiết
alibaba nguyễn
11 tháng 12 2016 lúc 7:07

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

alibaba nguyễn
11 tháng 12 2016 lúc 7:16

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

Lan_nhi
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 9:06

Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)

Từ giả thiết ta có:

\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x+y=2\)

Do đó:

\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)

\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)

\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)

Trần Gia Kỳ An
Xem chi tiết
Thắng Nguyễn
3 tháng 11 2016 lúc 18:33

Câu 1:(3x+2)(4x-5)=0

\(\Leftrightarrow\orbr{\begin{cases}3x+2=0\\4x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=\frac{5}{4}\end{cases}}\)

Câu 2:

x3+5x2+3x-9=0

<=>x3+6x2+9x-x2-6x-9=0

<=>x(x2+6x+9)-(x2+6x+9)=0

<=>(x-1)(x2+6x+9)=0

<=>(x-1)(x+3)2=0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\left(x+3\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

Thắng Nguyễn
3 tháng 11 2016 lúc 18:34

Câu 2: bổ sung thêm phần cuối

Tổng các giá trị x thỏa mãn là (-3)+1=-2