x^2-(2m-1)x+2m-2=0
tìm m có 2 nghiệm pb để
- x1^2+x2^2=1
- x1 < 3/2 < x2
X^2-2(m-1)x-2m=0 a, Tìm m để phương trình có 2 nghiệm phân biệt t/m x1^2+x1-x2=5-2m b,Tìm m để p trình có 2 nghiệm pb t/m x1=3x2 c,Tìm m để phương trình có 2 no pb t/m x1/x2=3
b: x1=3x2 và x1+x2=2m-2
=>3x2+x2=2m-2 và x1=3x2
=>x2=0,5m-0,5 và x1=1,5m-1,5
x1*x2=-2m
=>-2m=(0,5m-0,5)(1,5m-1,5)
=>-2m=0,75(m^2-2m+1)
=>0,75m^2-1,5m+0,75+2m=0
=>\(m\in\varnothing\)
c: x1/x2=3
x1+x2=2m-2
=>x1=3x2 và x1+x2=2m-2
Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn
cho phương trình x2 - ( 2m -1 )x +m2+m -2 = 0
tìm m để ptrinh có 2 nghiệm phân biệt x1x2 t/m x1 ( x1 - 2x2 ) + x2 ( x2 - 2x1 )=9
Sửa đề: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Delta=\left(2m-1\right)^2-4\left(m^2+m-2\right)\)
\(=4m^2-4m+1-4m^2-4m+8=-8m+9\)
Để phương trình có hai nghiệm phân biệt thì -8m+9>0
=>-8m>-9
=>\(m<\frac98\)
Theo Vi-et, ta có: \(\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\\ x_1x_2=\frac{c}{a}=m^2+m-2\end{cases}\)
Ta có: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
=>\(x_1^2-2\cdot x_1x_2+x_2^2-2\cdot x_1x_2=9\)
=>\(x_1^2+x_2^2-4\cdot x_1x_2=9\)
=>\(\left(x_1+x_2\right)^2-6x_1x_2=9\)
=>\(\left(2m-1\right)^2-6\left(m^2+m-2\right)=9\)
=>\(4m^2-4m+1-6m^2-6m+12=9\)
=>\(-2m^2-10m+13=9\)
=>\(-2m^2-10m+4=0\)
=>\(m^2+5m-2=0\)
=>\(m^2+5m+\frac{25}{4}-\frac{33}{4}=0\)
=>\(\left(m+\frac52\right)^2=\frac{33}{4}\)
=>\(\left[\begin{array}{l}m+\frac52=\frac{\sqrt{33}}{2}\\ m+\frac52=-\frac{\sqrt{33}}{2}\end{array}\right.\Rightarrow\left[\begin{array}{l}m=\frac{\sqrt{33}-5}{2}\left(nhận\right)\\ m=\frac{-\sqrt{33}-5}{2}\left(nhận\right)\end{array}\right.\)
X^2-(2m+3)x+m^2+2m+3=0 a,Tìm m để ptrinh có 2 no trái dấu b,Tìm m để ptrinh có 2 no pb t/m 4x1x2=(x1+x2)^2-2(x1+x2)+5 c,Tìm 2 no pb x1=2 và x2>4
a: Để phương trình có hai nghiệm trái dấu thì
m^2+2m+3<0
=>m^2+2m+1+2<0
=>(m+1)^2+2<0(vô lý)
b:
Δ=(2m+3)^2-4(m^2+2m+3)
=4m^2+12m+9-4m^2-8m-12
=4m-3
Để phương trình có hai nghiệm phân biệt thì 4m-3>0
=>m>3/4
4x1x2=(x1+x2)^2-2(x1+x2)+5
=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5
=>4m^2+8m+12=4m^2+12m+9-4m-6+5
=>8m+12=8m-1
=>12=-1(vô lý)
cho phương trình x^2-2(m-1)x+2m-5=0
tìm m để pt đã cho có 2 ngh phân biệt thỏa mãn :
[x1^2 - 2m(x1 -1)-4](1-2.x2)= 5
cho pt x^2 -2(m+3)x +2m +5=0 (1).
tìm các gt của m để (1) có 2 nghiệm dương pb x1,x2 sao cho 1/căn x1 + 1/căn x2 = 4/3
Xét phương trình: \(x^2-2\left(m+3\right)x+2m+5=0\Rightarrow\Delta'=\left(m+3\right)^2-2m-5=\left(m+2\right)^2\ge0\) .
Do đó phương trình luôn có 2 nghiệm và để phương trình có 2 nghiệm phân biệt thì \(m\ne-2.\)
Theo định lý viet thì ta có: \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=2m+5\end{cases}}\). Do đó: \(m>-\frac{5}{2}\)\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\Rightarrow\frac{1}{x_1}+\frac{1}{x_2}+2\sqrt{\frac{1}{x_1x_2}}=\frac{x_1+x_2}{x_1x_2}+2\sqrt{\frac{1}{2m+5}}=\frac{16}{9}\)
\(\Leftrightarrow\frac{2m+6}{2m+5}+2\sqrt{\frac{1}{2m+5}}=\frac{1}{2m+5}+2\sqrt{\frac{1}{2m+5}}+1=\left(\sqrt{\frac{1}{2m+5}}+1\right)^2=\frac{16}{9}\)
\(\Rightarrow\sqrt{\frac{1}{2m+5}}=\frac{1}{3}\Leftrightarrow\frac{1}{2m+5}=\frac{1}{9}\Leftrightarrow2m+5=9\Leftrightarrow m=2.\)
Vậy \(m=2.\)
Lời giải:
a) Khi $m=2$ thì pt trở thành:
$x^2-10x+15=0\Leftrightarrow (x-5)^2=10\Rightarrow x=5\pm \sqrt{10}$
b)
Để pt có 2 nghiệm pb $x_1,x_2$ thì trước tiên:
$\Delta'=(2m+1)^2-(4m^2-2m+3)>0$
$\Leftrightarrow 6m-2>0\Leftrightarrow m>\frac{1}{3}$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(2m+1)\\ x_1x_2=4m^2-2m+3\end{matrix}\right.\)
Để $(x_1-1)^2+(x_2-1)^2+2(x_1+x_2-x_1x_2)=18$
$\Leftrightarrow x_1^2+x_2^2-2(x_1+x_2)+2+2(x_1+x_2-x_1x_2)=18$
$\Leftrightarrow x_1^2+x_2^2-2x_1x_2=16$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16$
$\Leftrightarrow 4(2m+1)^2-4(4m^2-2m+3)=16$
$\Leftrightarrow (2m+1)^2-(4m^2-2m+3)=4$
$\Leftrightarrow 6m-2=4\Leftrightarrow m=1$ (thỏa mãn)
vậy...........
Cho pt : x^2 -2(m-1)x -3+ 2m=0 Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1 bình + x2 -2m =0
Tìm tham số m để phương trình x^2-2(m+1)x+m^2+2m=0 có 2 nghiệm X1,X2 (X1<X2) thỏa mãn |X1|=3|x2|
a=1
b=-2(m+1)
c=m2+2m
△'=(m+1)2-(m2+2m)1=m2+2m+1-m2-2m=1>0 ∀ m
=> pt luôn có 2n0 phân biệt ∀m
Cho Phương trình: -x²+(m+2)x+2m=0
Tìm m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn điều kiện: x1+4x2=0
\(-x^2+\left(m+2\right)x+2m=0\)
\(\Delta=\left(m+2\right)^2+8m=\left(m+6\right)^2-32\)
Để phương trình có 2 nghiệm phân biệt
<=> \(\Delta>0\Leftrightarrow\left(m+2\right)^2>32\Leftrightarrow m>\sqrt{32}-2\)
Vì phương trình có 2 nghiệm phân biệt
Áp dụng hệ thức vi ét
\(\Rightarrow x_1+x_2=m+2\)
=> \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\)
\(\Rightarrow m=-3x_2-2\)
Bạn xem lại đề chứ k tìm được m luôn á
Cho PT: x2 - 2(m+1)x + 2m - 3 = 0
Tìm các giá trị của m để PT có 2 nghiệm phân biệt x1, x2 thỏa mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị nhỏ nhất.
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1