tìm số nguyên x sao cho
a) -7<x<4
b)-2<x<9
c) -5<x<0
d)-10<x<-4
Bài 4: Tìm các số nguyên x sao cho
a) –3 ⋮ (x – 2)
b) (3x + 7) ⋮ (x – 2)
c*) (x2 + 7x + 2) ⋮ (x + 7)
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
| x-2 | 1 | -1 | 3 | -3 |
| x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
| x-2 | 1 | -1 | 13 | -13 |
| x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
| x+7 | 1 | -1 | 2 | -2 |
| x | -6 | -8 | -5 | -9 |
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 16
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Bài 2 có lỗi không bạn?
q+qp> 2 mà đây là 1 số nguyên tố nên đây là số lẻ
mà dù q chẵn hay lẻ thì q+qp chẵn (vô lý)
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 165
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Bài 2:
a: \(p^2-2q^2=17\)
=>\(2q^2=p^2-17\)
=>\(q^2=\frac{p^2-17}{2}\)
=>\(q^2\) ⋮2
=>q⋮2
mà q là số nguyên tố
nên q=2
Ta có: \(p^2-2q^2=17\)
=>\(p^2=2q^2+17=2\cdot2^2+17=25=5^2\)
=>p=5(nhận)
b: Đặt \(A=q+q^{p}\)
p là số nguyên tố nên p>1
=>p-1>0
Ta có: \(A=q+q^{p}\)
\(=q\left(q^{p-1}+1\right)\)
Để A là số nguyên tố thì q là số nguyên tố và \(q^{p-1}+1=1\)
=>\(q^{p-1}=0\) và q là số nguyên tố
mà \(q^{p-1}<>0\) \(\forall\) q
nên (q;p)∈∅
Bài 1: Tìm x ∈ N biết
a) 72 - 7(x+1) = 42
b) (2x - 1)3 = 412 : 16
c) 6x + 5 chia hết cho (3x - 1)
d) x2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
b) pq + qp là 1 số nguyên tố
1:
a: =>7(x+1)=72-16=56
=>x+1=8
=>x=7
b: (2x-1)^3=4^12:16=4^10
=>\(2x-1=\sqrt[3]{4^{10}}\)
=>\(2x=1+\sqrt[3]{4^{10}}\)
=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)
c: \(\Leftrightarrow6x-2+7⋮3x-1\)
=>3x-1 thuộc Ư(7)
mà x là số tự nhiên
nên 3x-1 thuộc {-1}
=>x=0
d: x^2+7 chia hết cho 2x^2+1
=>2x^2+14 chia hết cho 2x^2+1
=>2x^2+1+13 chia hết cho 2x^2+1
=>2x^2+1 thuộc Ư(13)
=>2x^2+1=1(Vì x là số tự nhiên)
=>x=0
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 16
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Lưu ý, e mới sắp lên lớp 6, mn giải theo cách lớp 6 cho e với nhé ạ
Bài 2:
a: \(p^2-2q^2=17\)
=>\(2q^2=p^2-17\)
=>\(q^2=\frac{p^2-17}{2}\)
=>\(q^2\) ⋮2
=>q⋮2
mà q là số nguyên tố
nên q=2
Ta có: \(p^2-2q^2=17\)
=>\(p^2=2q^2+17=2\cdot2^2+17=25=5^2\)
=>p=5(nhận)
b: Đặt \(A=q+q^{p}\)
p là số nguyên tố nên p>1
=>p-1>0
Ta có: \(A=q+q^{p}\)
\(=q\left(q^{p-1}+1\right)\)
Để A là số nguyên tố thì q là số nguyên tố và \(q^{p-1}+1=1\)
=>\(q^{p-1}=0\) và q là số nguyên tố
mà \(q^{p-1}<>0\) \(\forall\) q
nên (q;p)∈∅
tìm các số nguyên x,y sao cho
a)(x+1)(y-2)=-5
b)x.y=-3
c)x.y=-3 và x<y
d)(x-1)(y+1)=-3
b) Ta có: xy=-3
nên x,y là các ước của -3
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(1;-3\right);\left(-1;3\right);\left(-3;1\right);\left(3;-1\right)\right\}\)
tìm số nguyên tố p sao choa p+2,p+a cũng là số nguyên tố
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
a: \(p^2-2q^2=17\)
=>\(2q^2=p^2-17\)
=>\(q^2=\frac{p^2-17}{2}\)
=>\(q^2\) ⋮2
=>q⋮2
mà q là số nguyên tố
nên q=2
Ta có: \(p^2-2q^2=17\)
=>\(p^2=2q^2+17=2\cdot2^2+17=25=5^2\)
=>p=5(nhận)
b: Đặt \(A=q+q^{p}\)
p là số nguyên tố nên p>1
=>p-1>0
Ta có: \(A=q+q^{p}\)
\(=q\left(q^{p-1}+1\right)\)
Để A là số nguyên tố thì q là số nguyên tố và \(q^{p-1}+1=1\)
=>\(q^{p-1}=0\) và q là số nguyên tố
mà \(q^{p-1}<>0\) \(\forall\) q
nên (q;p)∈∅
Câu 1: ( 3 đ) Tìm x thuộc tập số tự nhiên sao cho
a) 7 ⋮ ( x - 2)
b) x ⋮ 12, x ⋮ 15, x ⋮ 20 và 150 < x < 280
a: \(\Leftrightarrow x-2\in\left\{-1;1;7\right\}\)
hay \(x\in\left\{1;3;9\right\}\)
b: \(\Leftrightarrow x\in BC\left(12;15;20\right)\)
mà 150<x<280
nên \(x\in\left\{180;240\right\}\)
Tìm số nguyên tố p, q sao cho
a) p +10, p +14 là các số nguyên tố.
b) q + 2, q +10 là các số nguyên tố.
a.\(p\in\left\{3\right\}\)
b.\(q\in\left\{3\right\}\)
\(a,\) p có dạng 3k+1;3k+2 hoặc 3k
\(TH1:p=3k+1\\ \Rightarrow p+14=3k+1+14=3k+15⋮3\left(loại\right)\\ TH2:p=3k+2\\ \Rightarrow p+10=3k+12⋮3\left(loại\right)\\ TH3:p=3k\Rightarrow p+10=3k+10\left(chọn\right)\\ \Rightarrow p+14=3k+14\left(chọn\right)\)
Vậy p có dạng 3k thỏa mãn
\(\Rightarrow p=3\)
Bạn làm tương tự với câu b nha