a: \(p^2-2q^2=17\)
=>\(2q^2=p^2-17\)
=>\(q^2=\frac{p^2-17}{2}\)
=>\(q^2\) ⋮2
=>q⋮2
mà q là số nguyên tố
nên q=2
Ta có: \(p^2-2q^2=17\)
=>\(p^2=2q^2+17=2\cdot2^2+17=25=5^2\)
=>p=5(nhận)
b: Đặt \(A=q+q^{p}\)
p là số nguyên tố nên p>1
=>p-1>0
Ta có: \(A=q+q^{p}\)
\(=q\left(q^{p-1}+1\right)\)
Để A là số nguyên tố thì q là số nguyên tố và \(q^{p-1}+1=1\)
=>\(q^{p-1}=0\) và q là số nguyên tố
mà \(q^{p-1}<>0\) \(\forall\) q
nên (q;p)∈∅