CHUNG MINH x^2 + 4y^2 -2x - 4xy + 4y + 2018 > 0
chứng minh x^2+4y^2-2x-4xy+4y+2018 luôn âm với mọi x
giúp với mình cần gấp
\(x^2+4y^2-2x-4xy+4y+2018=\left[x^2-2x\left(1+2y\right)+\left(1+2y\right)^2\right]+2017=\left(x-1-2y\right)^2+2017\ge2017>0\)
chung minh bieu thua sau co gia trin duong voi moi x
a)x^2-x+1
b)(x-2)(x+4)
c 2x^2-4xy+4y^2+2x
a: \(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
b: \(=x^2+2x-8\)
\(=x^2+2x+1-9=\left(x+1\right)^2-9>=-9\)
Chứng minh: 4y^2+2x^2+4xy-6x+10>0 với mỗi x,y
\(4y^2+2x^2+4xy-6x+10\)
\(=4y^2+4xy+x^2+x^2-6x+9+1\)
\(=\left(2y+x\right)^2+\left(x-3\right)^2+1\)
Vì: \(\hept{\begin{cases}\left(2y+x\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(2y+x\right)^2+\left(x-3\right)^2+1>0\)
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
I : Tìm x , y
a) x^2+y^2-2x+4y+5=0
b) 4x^2+y^2-4x-6x+10=0
c) 5x^2-4xy+y^2-4x+4=0
d)2x^2-4xy+4y^2-10x+25=0
help me
a. Ta có: x2+y2-2x+4y+5=0
⇌(x-1)2+(y-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
b. Ta có: 4x2+y2-4x-6y+10=0
⇌ (2x-1)2+(y-3)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\end{matrix}\right.\)
c.Ta có: 5x2-4xy+y2-4x+4=0
⇌(2x-y)2+(x-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)
d.Ta có: 2x2-4xy+4y2-10x+25=0
⇌ (x-2y)2+(x-5)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=5\end{matrix}\right.\)
Chứng minh rằng: 2x2+4y2+4xy-6x+10 >0 Với mọi số thực x và y
Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)
cho x,y thoa man 4x2+2y2-4xy-20x+4y+34=0 tinhS=(x-4)2018+(y-4)2018
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)
Tìm x,y biết
2x^2+4xy+2x+4y^2+1=0
2x2 + 4xy + 2x + 4y2 + 1 = 0
(x2 + 2.x.2y + 4y2) + x2 + 2x + 1 = 0
(X + 2y)2 + (x + 1)2 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}-1+2y=0\\x=-1\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{1}{2}\\x=-1\end{cases}}\)