Giá trị của a thoả mãn
a/b=-1.2/3.2 và b-a=5.94
giá trị a thỏa mãn :a/b=-1.2/3.2 và b-a=5.94
tim a biet a/b=-1.2/3.2 va a-b= 5.94
\(\frac{a}{b}=\frac{-1,2}{3,2}\Rightarrow\frac{a}{-1,2}=\frac{b}{3,2}=\frac{a-b}{-1,2-3,2}=\frac{5,94}{-4,4}=-1,35\Rightarrow a=-1,35.\left(-1,2\right)=1,62\)
Cho a ≥ 0, b ≥ 0; a và b thoả mãn 2a + 3b ≤ 6 và 2a + b ≤ 4. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = a² - 2a – b.
cho hai số a, b thoả mãn a^2+b^2=1. tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A=a^6+b^6
Ta có
A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)
= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)
Ta lại có
1 = a2 + b2 \(\ge\)2ab
\(\Rightarrow ab\le\frac{1}{2}\)(2)
Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)
Đạt được khi a2 = b2 = 0,5
Giá trị lớn nhất không có
Cho 2 số nguyên dương a và b thoả mãn a.b= 2010. Nếu a > b thì giá trị nhỏ nhất của a - b là ?
Ta có: 2010 = 2.3.5.67
=> (a,b) = (1,2010;2,1005;3,670;5,402;6,335;10,201;15,134;30,67)
Nhỏ nhất khi a - b = 67 - 30 = 37
Cho các số a, b thoả mãn a^2 + 9ab - 22b^2=0 và b ≠0. Tính giá trị của biểu thức M= a + 3b/2a - b
a^2+9ab-22b^2=0
=>a^2+11ab-2ab-2b^2=0
=>(a+11b)(a-2b)=0
=>a=2b hoặc a=-11b
TH1: a=2b
\(M=\dfrac{2b+3b}{4b-b}=\dfrac{5}{3}\)
TH2: a=-11b
\(M=\dfrac{-11b+3b}{-22b-b}=\dfrac{8}{23}\)
Cho a>=0, b>=0;a và b thoả mãn 2a+3b=<6,2a+b=<4.Tìm giá lớn nhất và giá trị nhỏ nhất của biểu thức A=a^2-2a-b
Cho a và b là 2 số dương thoả mãn: \(a^{200}+b^{200}=a^{201}+b^{201}=a^{202}+b^{202}\). TÍnh giá trị của biểu thức: \(P=a^{2017}+b^{2017}\)
Ta có \(\left(a^{201}+b^{201}\right)^2=\left(a^{200}+b^{200}\right)\left(a^{202}+b^{202}\right)\Leftrightarrow2a^{201}b^{201}=a^{200}b^{202}+a^{202}b^{200}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\).
Khi đó \(a^{200}=a^{201}\Leftrightarrow a=1\).
Do đó P = 2.
Cho A và B là 2 Cô dương thoả mãn A^200+ B^200= A^201+ B^201=A^202+ B^202. tính giá trị của P= A^2006+ B^2006.
\(a^{200}+b^{200}=a^{201}+b^{201}=a^{202}+b^{202}\)
\(\Leftrightarrow a,b\in\left\{\left(0;1\right),\left(0;0\right),\left(1;0\right),\left(1;1\right)\right\}\)
\(\Rightarrow P=a^{2006}+b^{2006}\in\left\{1;0;2\right\}\)