(2x-y)^3+y^3
Khai triển 8x^3 + 12x^2y + 6xy^2 + y^3 được kết quả là : A. (2x^3 + y)^3 B. (2x + y^3)^3 C. (2x + y)^3 D. (2x – y)^3
8x^3(y+z)-y^3(z+2x)-2x^3(2x-y)
(x^2+y^2)^3+(z^2-x^2)^3-(y^2+z^2)^3
Rút gọn:
a)2x.(3x-1)-(x-3).(6x+2)
b)(2x-3)2-(1+2x).(2x-1)+3.(2x-3)
c)(x+y-1)2-2.(x+y-1).(x+y)+(x+y)2
a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)
\(=6x^2-2x-6x^2-2x+18x+6\)
=14x+6
b: Ta có: \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)+3\left(2x-3\right)\)
\(=4x^2-12x+9-4x^2+1+6x-9\)
\(=-6x+1\)
c: Ta có: \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2\)
=1
a) \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)=6x^2-2x-6x^2-2x+18x+6=14x+6\)
b) \(\left(2x-3\right)^2-\left(1+2x\right)\left(2x-1\right)+3\left(2x-3\right)=4x^2-12x+9-4x^2+1+6x-9=-6x+1\)
c) \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
P=(3x +y)3 -(2x-y) (2x +y) +(x-3y)3 tại x=1/3 : y= - 1/3
\(P=\left(3x+y\right)^3-\left(2x-y\right)+\left(x-3y\right)^3\)
\(=3x^3+3.3x^2.y+3.3x.y^2+y^3\)\(-2x^2-y^2\)\(+x^3-3.x^2.3y+3.x.3y^2-y^3\)
\(=\left(3x^3+x^3\right)\)\(+\left(9x^2y-9x^2y\right)\)\(+\left(9xy^2-9xy^2\right)\)\(+\left(y^3-y^3\right)\)\(-2x^2-y\)
= \(4x^3-2x^2-y^2\)
Thay x=\(\dfrac{1}{3},y=-\dfrac{1}{3}\)
\(4.\left(\dfrac{1}{3}\right)^3-2.\left(\dfrac{1}{3}\right)^2-\left(\dfrac{-1}{3}\right)^2\)
=\(4.\dfrac{1}{27}-2.\dfrac{1}{9}-\dfrac{1}{9}=\dfrac{4}{27}-\dfrac{2}{9}-\dfrac{1}{9}=\dfrac{-5}{9}\)
2/3x^2(2x^2-y/3)-2x^2(2x^2-1)+(2x^2-y/3)(1-y/3)(2x^2-1)
Tìm x nguyên sao cho y nguyên
a, y=2/2x-3
b, y=2x-1/2x-3
c, y=2x^2-1/2x-3
d, y=2x-3/2x^2-1
e, y=2x^2-3x-4/4-x
AI NHANH MIK TICK CHO
a. \(y=\frac{2}{2x+3}\in Z\)
\(\Rightarrow2x+3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{-5;-4;-2;-1\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{-2;-1\right\}\)
b. \(y=\frac{2x-1}{2x-3}=\frac{2x-3+2}{2x-3}=1+\frac{2}{2x-3}\)
Vì y thuộc Z nên 2 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{1;2;4;5\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{1;2\right\}\)
c. \(y=\frac{2x^2-1}{2x-3}=\frac{x\left(2x-3\right)+2x-3-x+2}{2x-3}=x+1-\frac{x+2}{2x-3}\)
Vì y thuộc Z nên x thuộc Z ; x + 2 / 2x - 3 thuộc Z
=> 2x + 4 / 2x - 3 thuộc Z
=> 2x - 3 + 7 / 2x - 3 thuộc Z
=> 7 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow2x\in\left\{-4;2;4;10\right\}\)
\(\Rightarrow x\in\left\{-2;1;2;5\right\}\) ( tm x thuộc Z )
d,e tương tự
\(Chox,y>0\)
\(\log_{\sqrt{3}}\left[\dfrac{2x+y}{4x^2+y^2+2xy+2}\right]=2x\left(2x-3\right)+y\left(y-3\right)+2xy\)
Tính \(P_{Max}=\dfrac{6x+2y+1}{2x+y+6}\)
\(log_{\sqrt{3}}\left(2x+y\right)-log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)=\left(4x^2+y^2+2xy+2\right)-3\left(2x+y\right)-2\)
\(\Leftrightarrow log_{\sqrt{3}}\left(2x+y\right)+2+3\left(2x+y\right)=log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)+\left(4x^2+y^2+2xy+2\right)\)
\(\Leftrightarrow log_{\sqrt{3}}\left(6x+3y\right)+\left(6x+3y\right)=log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)+\left(4x^2+y^2+2xy+2\right)\)
Xét hàm \(f\left(t\right)=log_{\sqrt{3}}t+t\) với \(t>0\)
\(f'\left(t\right)=\dfrac{1}{t.ln\sqrt{3}}+1>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow6x+3y=4x^2+y^2+2xy+2\)
\(\Leftrightarrow4x+y=\left(x+y-1\right)^2+1+3\left(x^2+1\right)-3\ge2\left(x+y-1\right)+6x-3\)
\(\Leftrightarrow4x+y\ge2\left(4x+y\right)-5\)
\(\Leftrightarrow4x+y\le5\)
\(\Rightarrow P=\dfrac{2x+y+6+\left(4x+y-5\right)}{2x+y+6}=1+\dfrac{4x+y-5}{2x+y+6}\le1\)
\(P_{max}=1\) khi \(x=y=1\)
Tinh A=2/3. X2Y(2X2-Y/3)-2X2(2X2+1)+(2X2-Y/3)(1-Y/3)(2X2-1)
Bài 1 làm tính nhân
2x.(x^2-7x-3)
(-2x^3+y^2-7xy).4xy^2
(-5x^3).(2x^2+3x-5)
(2x^2-xy+y^2).(-3x^3)
(x^2-2x+3).(x-4)
(2x^3-3x-1).(5x+2)
Bài 2 Thực hiện phép tính
A,(2x+3y^2)
B, (5x-y)^2
C, (2x+y^2)^3
D, ( 3x^2-2y)^3
\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)
\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)