Tìm x biết:
\(\left(4x-1\right)^2=\left(1-4x\right)^2\)
Tìm x biết :
a)\((x+3)^2-\left(2x+1\right).\left(2x-1\right)=22\)
b)\(\left(4x+3\right).\left(4x-3\right)-\left(4x-5\right)^2=46\)
a) \(\left(x+3\right)^2-\left(2x+1\right).\left(2x-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-\left(4x^2-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-4x^2+1=22\)
\(\Leftrightarrow-3x^2+6x-12=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\)(vô lý)
b) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25-46=0\)
\(\Leftrightarrow40x-80=0\)
\(\Leftrightarrow x=2\)
Tìm x biết:
\(a.\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-5\right)=71\)
\(b.\left(2x-3\right)^3-8x\left(x-1\right)^2+4x\left(4x+1\right)+27=0\)
Tìm x, y, zϵ R biết: \(\left(4x^2-4x+1\right)^{2022}+\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)
vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)
mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)
=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
Tìm x biết:
\(\left(4x-1\right)^2=\left(1-4x\right)^4\)
Vì \(\left(4x-1\right)^2=\left(1-4x\right)^4.\)(*)
Đặt \(\left(4x-1\right)^2=t\) ( điều kiện \(t\ge0\)) \(\Leftrightarrow1-4x=-t^2\)
nên phương trình (*) \(\Leftrightarrow t=-t^2\)
\(\Leftrightarrow t^2+t=0\)
\(\Leftrightarrow t=0\) hoặc \(t=-1\)( loại do \(t\ge0\))
Ta có \(t=0\Leftrightarrow\left(4x-1\right)^2=0\Leftrightarrow4x-1=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Vậy phương trình có 1 nghiệm \(x=\frac{1}{4}.\)
Phân tích đa thức sau thành nhân tử
\(6x^2\left(x-4\right)^2-60\left(x^2-4x-1\right)+90\)
Tìm x, biết
\(4\left(4x-5\right)^2-16x^2+25=\left(5-4x\right)\left(2x-3\right)\)
Tìm x biết: \(2x.\left(8x-1\right)^2.\left(4x-1\right)=9\)
Ta có: \(2x\left(8x-1\right)^2\cdot\left(4x-1\right)=9\)
\(\Leftrightarrow\left(8x-1\right)^2\cdot\left(8x^2-2x\right)=9\)
\(\Leftrightarrow\left(64x^2-16x+1\right)\left(8x^2-2x\right)-9=0\)
\(\Leftrightarrow512x^4-128x^3-128x^3+32x^2+8x^2-2x-9=0\)
\(\Leftrightarrow512x^4-256x^3+40x^2-2x-9=0\)
\(\Leftrightarrow256x^3\left(2x-1\right)+40x^2-20x+18x-9=0\)
\(\Leftrightarrow256x^3\left(2x-1\right)+20x\left(2x-1\right)+9\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(256x^3+20x+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(256x^3+64x^2-64x^2-16x+36x+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[64x^2\left(4x+1\right)-4x\left(4x+1\right)+9\left(4x+1\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(4x+1\right)\left(64x^2-4x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{4}\right\}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Tìm x,biết:
\(8\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}+\dfrac{1}{4}\right)-4x\left(1-x+2x^2\right)+2=0\)
Mình Cảm Ơn Trước Nha!
Em đăng bài quả môn toán nhận hỗ trợ nhanh nhất nha