Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Tìm x biết: \(2x.\left(8x-1\right)^2.\left(4x-1\right)=9\)

Nguyễn Lê Phước Thịnh
10 tháng 12 2020 lúc 14:02

Ta có: \(2x\left(8x-1\right)^2\cdot\left(4x-1\right)=9\)

\(\Leftrightarrow\left(8x-1\right)^2\cdot\left(8x^2-2x\right)=9\)

\(\Leftrightarrow\left(64x^2-16x+1\right)\left(8x^2-2x\right)-9=0\)

\(\Leftrightarrow512x^4-128x^3-128x^3+32x^2+8x^2-2x-9=0\)

\(\Leftrightarrow512x^4-256x^3+40x^2-2x-9=0\)

\(\Leftrightarrow256x^3\left(2x-1\right)+40x^2-20x+18x-9=0\)

\(\Leftrightarrow256x^3\left(2x-1\right)+20x\left(2x-1\right)+9\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(256x^3+20x+9\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(256x^3+64x^2-64x^2-16x+36x+9\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[64x^2\left(4x+1\right)-4x\left(4x+1\right)+9\left(4x+1\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(4x+1\right)\left(64x^2-4x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{4}\right\}\) 


Các câu hỏi tương tự
nguyet nguyen
Xem chi tiết
Nguyễn Huế
Xem chi tiết
Big City Boy
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyen Thi Mai
Xem chi tiết
Học đi
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Song Thư
Xem chi tiết