Chứng minh rằng: x^2 - 8x + 17 >0, với mọi x
Chứng minh rằng:
a, x^2 + 8x + 17 >0 với mọi x
b, x^2- x+ 1> hoặc = 3/4 với mọi x
a) \(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\ge1>0\)
\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
a) \(x^2+8x+17>0\) với mọi x
Ta có: \(x^2+8x+17=x^2+8x+16+1\)
\(=\left(x+4\right)^2+1>0\) với mọi x
Vậy \(x^2+8x+17>0\) với mọi x
b) \(x^2-x+1\ge\dfrac{3}{4}\) với mọi x
Ta có \(x^2-x+1=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
Vậy \(x^2-x+1\ge\dfrac{3}{4}\) với mọi x
chứng minh rằng với mọi x ϵ R
x^2-8x+17>0
x^2+4x+5>0
x^2-x+1>0
-x^2-4x-5<0
-x^2-3x-4<0
-x^2+10x-27<0
1 Chứng minh rằng
a.2x2+8x+20>0 với mọi x
b.x4-3x2+5>0 với mọi x
c.-x2+7x-17<0 với mọi x
d.-2x2+6x2-5<0 với mọi x
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)
Bài 1 : Tìm x
a, (7x-3)^2 - 5x (9x+2) - 4x^2 = 18
b, (x-7)^2 -9 (x+4)^2 = 0
c,(2x+1)^2+(4x-1) (x+5) =36
Bài 2: Chứng minh rằng:
a, x^2 -12x +39> 0 với Mọi x
b,17- 8x+x^2>0 với mọi x
c, -x^2 +6x -11<0 với mọi x
d,-x^2 +18x -83<0 với mọi x
Bài 1.
a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18
<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18
<=> -52x + 9 = 18
<=> -52x = 9
<=> x = -9/52
b) ( x - 7 )2 - 9( x + 4 )2 = 0
<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0
<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0
<=> -8x2 - 86x - 95 = 0
<=> -8x2 - 10x - 76x - 95 = 0
<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0
<=> ( x + 5/4 )( -8x - 76 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)
c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36
<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36
<=> 8x2 + 23x - 4 - 36 = 0
<=> 8x2 + 23x - 40 = 0
=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))
Bài 2.
a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
Chứng minh rằng
-x2 + 8x - 19 < 0 với mọi giá trị x
\(-x^2+8x-19=-\left(x^2-8x+16\right)-3=-\left(x-4\right)^2-3\le-3< 0\)
Chứng minh rằng
1) x^2-4x+5>0
2) -x^2+8x-17<0
1)
Ta có: \(x^2-4x+5=x^2-4x+4+1=\left(x+2\right)^2+1\ge1>0\left(đpcm\right)\)
2)
Ta có:\(-x^2+8x-17=-x^2+8x-16-1=-\left(x^2-8x+16\right)-1=-\left(x-4\right)^2-1\le-1< 0\)
1 Chứng minh rằng
a.2x^28x+20>0 với mọi x
b.x^4-3x^2+5>0 với mọi x
c.-x^2+7x-17<0 với mọi x
d.-2x^2+6x^2-5<0 với mọi x
a) Chứng minh rằng: \(2x^2-8x+13>0\)với mọi giá trị của x
b) CMR:\(-2+2x-x^2< 0\) với mọi giá trị của x
a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)
\(=2\left(x^2-4x+4\right)+5\)
\(=2\left(x-2\right)^2+5\ge5\forall x\)
Giả sử trước khi làm nhé
\(a)\)\(2x^2-8x+13>0\)
\(\Leftrightarrow\)\(4x^2-16x+26>0\)
\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)
\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng )
Vậy ...
\(b)\)\(-2+2x-x^2< 0\)
\(\Leftrightarrow\)\(x^2-2x+2>0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng )
Vậy ...
Chúc bạn học tốt ~
\(-2+2x-x^2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\)
Do \(-\left(x-1\right)^2\le0\)
\(\Rightarrow-\left(x-1\right)^2-1\le0-1< 0\left(dpcm\right)\)
Chứng minh: x^2 – 8x +20 > 0 với mọi x
Giúp em với ạ
\(x^2-8x+20=\left(x^2-8x+16\right)+4=\left(x-4\right)^2+4\ge4>0\forall x\)