Ta có:
x^2-8x+17=x^2-8x+16+1
=(x-4)^2+1
Vì (x-4)^4>=0 với mọi x
=>(x-4)^2+1>=1
mà 1>0=>(x-4)^2+1>0 với mọi x
Hay x^2-8x+17>0 với mọi x
Ta có:
x^2-8x+17=x^2-8x+16+1
=(x-4)^2+1
Vì (x-4)^4>=0 với mọi x
=>(x-4)^2+1>=1
mà 1>0=>(x-4)^2+1>0 với mọi x
Hay x^2-8x+17>0 với mọi x
chứng minh rằng với mọi x ϵ R
x^2-8x+17>0
x^2+4x+5>0
x^2-x+1>0
-x^2-4x-5<0
-x^2-3x-4<0
-x^2+10x-27<0
Bài 1 : Tìm x
a, (7x-3)^2 - 5x (9x+2) - 4x^2 = 18
b, (x-7)^2 -9 (x+4)^2 = 0
c,(2x+1)^2+(4x-1) (x+5) =36
Bài 2: Chứng minh rằng:
a, x^2 -12x +39> 0 với Mọi x
b,17- 8x+x^2>0 với mọi x
c, -x^2 +6x -11<0 với mọi x
d,-x^2 +18x -83<0 với mọi x
Chứng minh rằng
-x2 + 8x - 19 < 0 với mọi giá trị x
Chứng minh rằng
1) x^2-4x+5>0
2) -x^2+8x-17<0
a) Chứng minh rằng: \(2x^2-8x+13>0\)với mọi giá trị của x
b) CMR:\(-2+2x-x^2< 0\) với mọi giá trị của x
Chú ý rằng nếu c > 0 thì a + b 2 + c và a + b 2 + c đều dương với mọi a, b. Áp dụng điều này chứng minh rằng:
Với mọi giá trị của x khác ± 1, biểu thức:
x + 2 x - 1 x 3 2 x + 2 + 1 - 8 x + 7 2 x 2 - 2 luôn luôn có giá trị dương.
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
1, Chứng minh:
a. A = 5 - 8x - x^2 < 0 với mọi x
b.B = 3x . x +3 +7 > 0 với mọi x
Chứng minh rằng A=31x4-6x+17>0 với mọi x