tìm x,y
\(x^2+\left(y-2\right)^2=0\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
cho x,y,z>0 thỏa mãn \(\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)=8\)
Tìm giá trị nhỏ nhất của S=\(xyz\left(x+y+z\right)^3\)
(có thể dùng BDT \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\))
tks mn<3
cho x;y>0, tìm\(_{Min}P=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
\(S=\dfrac{x^2+y^2+2xy}{x^2+y^2}+\dfrac{x^2+y^2+2xy}{xy}\)
\(=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)
\(=3+\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}\)
\(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}>=2\cdot\sqrt{\dfrac{2xy}{x^2+y^2}\cdot\dfrac{x^2+y^2}{2xy}}=2\)
Dấu = xảy ra khi \(\dfrac{x^2+y^2}{2xy}=\dfrac{2xy}{x^2+y^2}\)
=>x=y
x^2+y^2>=2xy
=>\(\dfrac{x^2+y^2}{2xy}>=1\)
Dấu = xảy ra khi x=y
=>S>=6
Dấu = xảy ra khi x=y
Tìm cap số (x,y) thoa man
\(x^2+y^2=0\)
\(x^2+2y^2+2y\left(1-x\right)=-1\)
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(4x^2+y^2-2\left(2x+y-1\right)=0\)
\(2x^2\left(1-y\right)+y\left(y+xy-2x\right)=0\)
\(x^2+y^2=0\)
Mà \(x^2\ge0;y^2\ge0\)nên \(x^2+y^2\ge0\)
(Dấu "="\(\Leftrightarrow x=y=0\))
\(x^2+2y^2+2y\left(1-x\right)=-1\)
\(\Leftrightarrow x^2+2y^2+2y-2xy+1=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+1\right)^2=0\)
Mà \(\left(x-y\right)^2+\left(y+1\right)^2\ge0\)
(Dấu "="\(\Leftrightarrow x=-1;y=-1\)
\(\left\{{}\begin{matrix}x^3=y^2+7x^2-mx\\y^3=x^2+7y^2-my\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x-y=0\\x^2+y^2+xy-6\left(x-y\right)+m=0\end{matrix}\right.\)
tìm m để pt có đúng 1 nghiệm. Từ x-y=0 Em tìm dc 1 nghiệm và m<16 rồi còn pt dưới thì ch bt làm sao ạ mn giúp em với em cảm ơn nhiêuuuuuu
Trừ vế cho vế:
\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)
- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)
Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m
Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)
Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)
Ta có:
\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)
\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)
Vậy \(m>16\) thì hệ có 1 nghiệm
\(\sqrt{\left(x-2024\right)^2}+\left|x+y-4z\right|+y^2.\sqrt{5}=0\left(x,y,z\inℝ\right)\)
TÌM x , y, z
Tìm số nguyên x,y,z , biết:
\(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2=0\) 0
Ta thấy \(\left(x+y-z\right)^2\ge0\); \(\left(x-y+2\right)^2\ge0\);\(\left(x+4\right)^2\ge0\)với mọi x,y,z
Suy ra \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2\ge0\)với mọi x,y,z
Mặt khác \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2=0\)
Nên \(\hept{\begin{cases}x+y-z=0\\x-y+2=0\\x+4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=z\\x+2=y\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x+y=z\\y=-2\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}z=-6\\y=-2\\x=-4\end{cases}}}\)
Vậy.....
Cho x > 0, y > 0 thỏa mãn x + y ≤ 1. Tìm GTNN của M = \(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\).
C1:
\(x,y>0\)
\(M=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\)Theo BĐT AM-GM (Caushy) ta có:
\(M=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}.2\sqrt{\dfrac{1}{x^2}.\dfrac{1}{y^2}}+4=\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{15}{4}.\dfrac{1}{xy}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{x+y}{2}\right)^2}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=20\)Đẳng thức xảy ra \(\left\{{}\begin{matrix}x^2=\dfrac{1}{16}x^2\\y^2=\dfrac{1}{16}y^2\\x+y=1\\x,y>0\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy \(MinM=20\)
Tìm x,y bt: \(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0.\)
HELP ME!
(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0
Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0
x + y = 13 và x - y = 6
x = (13 - 6) : 2 = 3,5
y = 13 - 3,5 = 9,5
Vậy x = 3,5 và y = 9,5
(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0
(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)
(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)
⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0
⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)
𝓥𝓲̀ \(\left(x-13+y\right)^2\ge0;\left(x-6-y\right)^2\ge0\)
\(\Rightarrow\left(x-13+y\right)^2+\left(x-6-y\right)^2\ge0\)
𝓓𝓪̂́𝓾 𝓫𝓪̆̀𝓷𝓰 𝔁𝓪̉𝔂 𝓻𝓪 𝓴𝓱𝓲 \(\left(x-13+y\right)^2=0;\left(x-6-y\right)^2=0\)
\(\Rightarrow\left(x-13+y\right)^2=0\) \(\Rightarrow\left(x-6-y\right)^2=0\)
\(x-13+y=0\) \(x-6-y=0\)
\(x+y=13\) \(x-y=6\)
\(\Rightarrow\)𝔁 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓵𝓸̛́𝓷 𝓱𝓸̛𝓷 𝔂 𝓫𝓸̛̉𝓲 𝓿𝓲̀ 𝓴𝓱𝓲 𝔁-𝔂 𝓴𝓮̂́𝓽 𝓺𝓾𝓪̉ 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓭𝓾̛𝓸̛𝓷𝓰
\(\Rightarrow x=\left(13+6\right)\div2=9,5\)
\(\Rightarrow y=13-9,5=3,5\)
𝓥𝓪̣̂𝔂 𝔁=9,5 𝓿𝓪̀ 𝔂=3,5