Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh harry
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 9 2021 lúc 10:30

\(A=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(minA=-56\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(B=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

\(maxB=5\Leftrightarrow x=2\)

Minh Hiếu
15 tháng 9 2021 lúc 10:31

MinA=0

⇔x=1 hoặc x=-3 hoặc x=-2 hặc x=-6

B\(=-x^2+2x+1+2x\)

\(=-\left(x^2-2x+1\right)+2\left(1+x\right)\)

\(=-\left(x-1\right)^2-2\left(x-1\right)\)

 

nguyen minh thu
Xem chi tiết
Vũ Ngọc Gà
28 tháng 3 2016 lúc 22:48

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

Nguyễn Hạ Long
Xem chi tiết
Trần Đức Thắng
3 tháng 8 2015 lúc 21:13

A = x^2 - 4x + 12 = x^2 - 4x + 4 +  8 = ( x+ 2 )^2 + 8 >= 8 ( với mọi x)

VẬy GTNN của BT klaf 8 khi x - 2 = 0 => x = 2 

b) 1 + 6x - x^2 = - ( x^2 - 6x - 1 ) = - ( x^2 - 6x + 9 - 10 )=- ( x - 3 )^2 + 10  <= -10 

VẬy GTLN là -10 khi x = 3

Trần Tuyết Như
3 tháng 8 2015 lúc 21:15

sửa lại:

a)  \(A=x^2-4x+12\)

         \(=\left(x^2-4x+2^2\right)+8\)

         \(=\left(x-2\right)^2+8\)

      mà (x + 2)2  > 0

Vậy giá trị nhỏ nhất của A = 8 tại x = 2

   b) \(A=1+6x-x^2\)

            \(=-\left(x^2-6x+3^2\right)+10\)

            \(=-\left(x-3\right)^2+10\)

 mà  -(x - 3)2  < 0

 Vậy giá trị lớn nhất của A = 10 tại x = 3

 

Lê Nguyễn Phạm
31 tháng 7 2016 lúc 19:42

hay đó

Trang
Xem chi tiết
Nguyễn Văn Vinh
6 tháng 11 2016 lúc 20:50

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

bảo trung phương
Xem chi tiết
Hùng Chu
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
22 tháng 6 2021 lúc 20:21

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4

Trần thắm
Xem chi tiết
Bùi Minh Hải
Xem chi tiết
Minh Triều
21 tháng 6 2015 lúc 22:18

1)a)x^2-x+1=x2-2.x.1/2+1/4 +3/4

=(x-1/2)2+3/4\(\ge\)3/4(vì (x-1/2)2\(\ge\)0)

dấu = xảy ra khi:

x-1/2=0

x=1/2

vậy GTNN của x^2-x+1 là 3/4 tại x=1/2

b)-x^2+x-y^2-4y-6

=(-x2+2x.1/2-1/4)+(-y2-4y-4)-7/4

=-(x2-2x.1/2+1/4)-(y2+4y+4)-7/4

=-(x-1/2)2-(y+2)2-7/4\(\le\)-7/4( vì -(x-1/2)2\(\le\)0;-(y+2)2\(\le\)0)

dấu = xảy ra khi:

x-1/2=0 và y+2=0

x=1/2 và y=-2

vậy GTLN của -x^2+x-y^2-4y-6 là -7/4 tại x=1/2 và y=-2

Vy Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:23

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

Xem chi tiết
Murad đồ thần đao ( ☢ Ŧë...
16 tháng 2 2020 lúc 16:46

Ta có :

\(A=x^6+y^6\)

\(=\left(x^2\right)^3+\left(y^2\right)^3\)

\(=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)

\(=x^4-x^2y^2+y^4\)

\(=\left(x^4+2x^2y^2+y^4\right)-3x^2y^2\)

\(=\left(x^2+y^2\right)^2-3x^2y^2\)

\(=1-3x^2y^2\)

Lại có : \(-3x^2y^2\le0\forall x\Rightarrow1-3x^2y^2\le1\forall x\)

Vậy giá trị lớn nhất của A là 1

Dấu "=" xảy ra khi \(x=0\)hoặc \(y=0\).
 

Khách vãng lai đã xóa