tìm GTLN của
E=x/x2+2
F=3*x2+14/x2+2
giúp mình làm nhé
1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2 với x ≠ 2
2. Tìm GTLN của Bthức: C= x2 + 4x - 14 : x2 -2x +1 với x≠ 1
giúp mình với ạ, mình cảm ơn nhiều ạ
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
tìm GTNN của biểu thức :
B=2x2 40x-15
C=x2-4xy+5y2-4y+28
Tìm GTLN của biểu thức :
D= - x2+4x+3
E=x-x2
F=\(\dfrac{5}{x^{2+2x+5}}\)
Mọi người ơi, giúp mình bài này với, cảm ơn mọi người nhiều nha !!!
Bài 8 : Tìm GTNN của biểu thức:
F= ( x - 1 )2 + ( x - 3 )2
Bài 9 : Tìm GTLN của biểu thức:
A= 4 - x2 + 2x
B= 10x - 23 - x2
C= -x2 + 6x
a) Rút gọn A
b) Với giá trị x;y nguyên dương nào thỏa mãn x + 2y = 14 nhận giá trị nguyên dương.
Mn giúp mik nhé! mik ko làm đc mấy bài này.
Bài 8:
\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)
Bài 9:
\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)
Tìm min của biểu thức(áp dụngBđtCauchy)
Q= (x2 + 2x+1)/(x+2)
R= (x2 -x+4)+ 1/( x 2 -x -1)
S=(x2 +x+1)/ (x2 +2x+1)
TÌM MAX CỦA BIỂU THỨc
A= x/(x+2004)2 với x>0
B= 3/(4x2 - 4x+5)
C= (x2 -6x+14)/ (x2- 6x+12)
Giúp mk với, đúng mình tick cho , mình cần gấp lắm, làm câu nào cũng được nhé!! Được hết ccàng tốt)
A=(-x2+x-11)/(x2-2*x+1)
tìm gtln,gtnn của biểu thức giúp e với ạ
ĐKXĐ: x<>1
Đặt A=K
=>\(\frac{-x^2+x-11}{x^2-2x+1}=K\)
=>\(K\left(x^2-2x+1\right)=-x^2+x-11\)
=>\(KX^2-2K\cdot x+K+x^2-x+11=0\)
=>\(x^2\left(K+1\right)+x\left(-2K-1\right)+K+11=0\) (1)
\(\Delta=\left(-2K-1\right)^2-4\left(K+1\right)\left(K+11\right)\)
\(=4K^2+4K+1-4K^2-48K-44=-44K-43\)
Để (1) có nghiệm thì Δ>=0
=>-44K-43>=0
=>-44K>=43
=>K<=-43/44
=>A<=-43/44
=>GTLN của A là -43/44 và A không có giá trị nhỏ nhất
Dấu '=' xảy ra khi \(A=-\frac{43}{44}\)
=>\(\frac{-x^2+x-11}{x^2-2x+1}=\frac{-43}{44}\)
=>\(\frac{x^2-x+11}{x^2-2x+1}=\frac{43}{44}\)
=>\(44\left(x^2-x+11\right)=43\left(x^2-2x+1\right)\)
=>\(44x^2-44x+484=43x^2-86x+43\)
=>\(x^2+42x+441=0\)
=>\(\left(x+21\right)^2=0\)
=>x+21=0
=>x=-21
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . | ||
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 | ||||||||||||||||||||
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
cho đa thức P(x)=-x2+3x+2
giúp mình với
tìm GTNN hoặc GTLN của A = 3x2+2x-3
B = (x2+x+20): x2 +x +5
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
x^2+x-12=0
A=
x1^2+ x2^2+x1^2.x2+x1.x2^2
Giúp mk đi
x² + x - 12 = 0
⇔ x² + 4x - 3x - 12 = 0
⇔ (x² + 4x) - (3x + 12) = 0
⇔ x(x + 4) - 3(x + 4) = 0
⇔ (x + 4)(x - 3) = 0
⇔ x + 4 = 0 hoặc x - 3 = 0
*) x + 4 = 0
⇔ x = -4
*) x - 3 = 0
⇔ x = 3
A = x₁² + x₂² + x₁².x₂ + x₁.x₂²
= (-4)² + 3² + (-4)².3 + (-4).3²
= 16 + 9 + 48 - 36
= 37
\(x^2+x-12=0\)
△=\(1^2+4\times12=49>0\)
⇒ptr có 2 ngh phân biệt \(x_1;x_2\)
Theo hệ thức viet: x\(_1\)+x\(_2\)=-1 và x\(_1\)x\(_2\)=-12
Có A= x\(_1\)\(^2\)+\(x_2\)\(^2\)+x\(_1\)\(^2\)x\(_2\)+x\(_1\)x\(_2\)\(^2\)
= (x\(_1\)+x\(_2\))\(^2\) + x\(_1\)\(x_2\)(\(x_1+\)x\(_2\)) -2x\(_1\)x\(_2\)
= \(\left(-1\right)^2+\left(-12\right).\left(-1\right)-2\left(-12\right)=1+12+24=37\)
Của bạn đây ạ <3
Cho 2 số thực x,y thỏa mãn: 0<x,y<=1 và x+y=3xy. Tìm GTNN và GTLN của P=x2+y2-4xy
Mọi người giúp mình nhé!