Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thùy Trang
Xem chi tiết
Akai Haruma
22 tháng 9 2021 lúc 8:50

Lời giải:

Vì $2>0$ nên $f(x)=2x-1$ là hàm đồng biến trên $R$
$\sqrt{3}-2-(\sqrt{5}-3)=1+\sqrt{3}-\sqrt{5}=1-\frac{2}{\sqrt{3}+\sqrt{5}}> 1-\frac{2}{1+1}=0$

$\Rightarrow \sqrt{3}-2> \sqrt{5}-3$

Vì hàm đồng biến nên $f(\sqrt{3}-2)> f(\sqrt{5}-3)$

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 23:12

a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)

\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)

Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)

b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)

\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)

Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)

lovely girl
Xem chi tiết
Lê Hồ Trọng Tín
5 tháng 9 2019 lúc 13:28

\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\sqrt[3]{\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{3}\right)^3}\)=1-\(\sqrt{3}\)

\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}=\sqrt[3]{\left(1-\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=1-\(\sqrt{5}\)

Ta thấy \(\sqrt{5}>\sqrt{3}\)nên 1-\(\sqrt{3}\)>\(1-\sqrt{5}\)

Vậy \(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}\)>\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)

Hương Phùng
Xem chi tiết
Nguyễn Ngọc Linh
8 tháng 7 2021 lúc 9:20

a. \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=x-3\sqrt{x} +2\sqrt{x}-6=x-\sqrt{x}-6\)

b. \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)=x-y\)

c. \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right).\sqrt{3}\)

\(=\left(\dfrac{5}{\sqrt{3}}-\dfrac{7}{\sqrt{3}}+\sqrt{3}\right).\sqrt{3}=\dfrac{5}{3}-\dfrac{7}{3}+9=\dfrac{25}{3}\)

d. \(\left(1+\sqrt{3}-\sqrt{5}\right)\left(1+\sqrt{3}+\sqrt{5}\right)\)

\(=\left(1+\sqrt{3}\right)^2-5=1+2\sqrt{3}+3-5=2\sqrt{3}-1\)

phan thị minh anh
Xem chi tiết
nguyễn thị mai anh
18 tháng 7 2016 lúc 22:41

\(tacó:...\frac{1}{3.\left(\sqrt{1}+\sqrt{2}\right)}>\frac{1}{3.2}=\frac{1}{\left(1+2.1\right).2.1}\) 

\(\frac{1}{5.\left(\sqrt{2}+\sqrt{3}\right)}>\frac{1}{5.4}=\frac{1}{\left(1+2.2\right).2.2}\) 

\(\frac{1}{7.\left(\sqrt{3}+\sqrt{4}\right)}>\frac{1}{7.6}=\frac{1}{\left(1+2..3\right).2.3}\) 

....

\(\frac{1}{49.\left(\sqrt{48}+\sqrt{49}\right)}>\frac{1}{49.48}=\frac{1}{\left(1+2.48\right).2.48}\) 

cộng vế theo vế ta đươc S =\(\frac{1}{\left(1+2.1\right).2}+\frac{1}{\left(1+2.2\right).2.2}+...+\frac{1}{\left(1+2.48\right).48.2}\)

\(=\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{10}+\frac{1}{21}+\frac{1}{36}+...+\frac{1}{4656}\right)\)  <  \(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4656}\right)\)

mà lại có : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+..+\frac{1}{4656}\) 

=> \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9312}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{96.97}\) 

             = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{97}=\frac{1}{2}-\frac{1}{97}=\frac{95}{194}\)  

vậy S < \(\frac{95}{194}\) 

mà \(\frac{95}{194}< \frac{3}{7}\) 

=> S < \(\frac{3}{7}\)

KẾT LUẬN  : S <\(\frac{3}{7}\)

 

 

Huỳnh Xuân Mai
Xem chi tiết
Huy Tran Tuan
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
10 tháng 2 2022 lúc 16:02

\(P=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

\(Q=\dfrac{1}{\sqrt{2}-1}=\dfrac{\sqrt{2}+1}{2-1}=\sqrt{2}+1\)

Do \(2< \sqrt{2}+1\)

=> P < Q

Trần Thùy Linh
Xem chi tiết
FL.Hermit
13 tháng 8 2020 lúc 22:38

Xét phân số tổng quát là: 

\(A=\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{1\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}\)

=>    \(A< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n}.\sqrt{n+1}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Thay từng số 1; 2; ....;  48 vào phân số tổng quát A

=>   \(S< \frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)

=>   \(S< \frac{1}{2}\left(1-\frac{1}{7}\right)=\frac{1}{2}.\left(\frac{6}{7}\right)=\frac{3}{7}\)

VẬY    \(S< \frac{3}{7}\)

Khách vãng lai đã xóa
Thắng Nguyễn
Xem chi tiết
Vũ Đức
Xem chi tiết