Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Akali
Xem chi tiết
Khánh Ngọc
14 tháng 4 2019 lúc 10:51

\(P=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(\Rightarrow P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow P=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow P=1-\frac{1}{100}\)

\(\Rightarrow P=\frac{99}{100}\)

_Shadow_
14 tháng 4 2019 lúc 10:51

\(P=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(P=1-\frac{1}{100}\)

\(P=\frac{99}{100}\)

~Học tốt~

Nguyễn Vũ Minh Hiếu
14 tháng 4 2019 lúc 10:52

\(P=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(P=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(P=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(P=\frac{1}{1}-\frac{1}{100}\)

\(P=\frac{99}{100}\)

Kimm
Xem chi tiết
Tung
Xem chi tiết
ĐÔRÊMON LOVELY FOFEVER
9 tháng 12 2015 lúc 14:46

\(A=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}:2\sqrt{2}=\frac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}\)

\(=\frac{1}{2.2}=\frac{1}{4}\)

myra hazel
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 21:31

a: \(\cos\alpha=\dfrac{1}{2}\)

\(\tan\alpha=\sqrt{3}\)

\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 9:58

a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)

\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)

b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)

\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)

mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).

nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 16:02

a) Bấm liên tiếp nút SHIFT, nút SIN, nút 0, nút . , nút 2, nút =

Ta được kết quả gần đúng là 11,537.

Vậy phương trình \(\sin x = 0,2\) có các nghiệm là :

\(x \approx 11,537 + k2\pi ,k \in Z\) và \(x \approx \pi  - 11,537 + k2\pi ,k \in Z\)

b) Bấm liên tiếp nút SHIFT, nút COS, nút -, nút 1 , nút : ,nút 5;  nút =

Ta được kết quả gần đúng là 101,537.

Vậy phương trình \(\cos x =  - \frac{1}{5}\) có các nghiệm là :

\(x \approx 101,537 + k2\pi ,k \in Z\) và \(x \approx  - 101,537 + k2\pi ,k \in Z\)

c) Bấm liên tiếp nút SHIFT, nút TAN, nút căn , nút 2 , nút =

Ta được kết quả gần đúng là 54,736.

Vậy phương trình \(\tan x = \sqrt 2 \) có các nghiệm là :

\(x \approx 54,736 + k\pi ,k \in Z\)

Ashley
Xem chi tiết
Akai Haruma
26 tháng 10 2023 lúc 13:10

Lời giải:

$A=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{100}-\sqrt{99}}{(\sqrt{99}+\sqrt{100})(\sqrt{100}-\sqrt{99})}$

$=\frac{\sqrt{2}-1}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+....+\frac{\sqrt{100}-\sqrt{99}}{1}$
$=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+....+\sqrt{100}-\sqrt{99}$

$=\sqrt{100}-1=10-1=9$

Xem chi tiết
ngô mi mi
Xem chi tiết
Thiên Thu Nguyệt
2 tháng 8 2015 lúc 9:55

Bạn ấy sai thì bạn nhắc nhẹ thôi chứ làm gì phải ồ zê như vậy

Yến Nhi
Xem chi tiết
FL.Han_
5 tháng 9 2020 lúc 21:20

a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)

b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
5 tháng 9 2020 lúc 21:21

a) Vì  \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)

                                    \(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)

                                    \(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)

b) Vì  \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)

                                 \(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)

                                 \(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)

Khách vãng lai đã xóa