cmr -9x2+12x-15 luôn âm với mọi x
CMR: các bt sau luôn có gt dương vs mọi gt của biến
a, 9x2 - 6x + 2
b, x2 + x + 1
c, 2x2 + 2x + 1
CMR: bt sau luôn âm vs mọi gt của biến
-9x2 + 12x - 15
câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x
câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x
CMR giá trị của các biểu thức sau không âm với mọi giá trị của biến x: A=x2 –3x+10 B = x2 – 5x + 2021 C = 4x2 + 4x + 5 D = 9x2 – 12x + 6
a: ta có: \(A=x^2-3x+10\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)
b: Ta có: \(B=x^2-5x+2021\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)
CMR các biểu thức sau luôn có giá trị âm với mọi x
a) -x2 - 2x - 8
b) -x2 - 5x - 11
c) -4x2 - 4x - 2
d) -9x2 + 6x - 7
Lời giải:
a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên
$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$
Vậy biểu thức luôn nhận giá trị âm với mọi $x$
b.
$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$
$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
c.
$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
d.
$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
cmr các biểu thức sau luôn có giá trị âm với mọi giá trị của biến
a) -9x^2+12x-15
b) -5-(x-1)(x+2)
a) \(-9x^2+12x-15\)
\(=-9x^2+12x-4-11\)
\(=-\left(9x^2-12x+4\right)-11\)
\(=-\left(3x-2\right)^2-11\)
Có: \(-\left(3x-2\right)^2\ge0\Rightarrow-\left(3x-2\right)^2-11\le-11\)
\(\Rightarrow-\left(3x-2\right)^2-11< 0\)
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-\left(x^2+x-2\right)\)
\(=-5-x^2-x+2\)
\(=-3-x^2-x\)
\(=-\left(3+x^2+x\right)\)
Có: \(x^2+x\ge0\Rightarrow3+x^2+x\ge3\)
\(\Rightarrow-\left(3+x^2+x\right)\le-3\)
\(\Rightarrow-\left(3+x^2+x\right)< 0\)
Ai giúp với:
CMR:
\(A=\left(x+3\right):\left(x-11\right)+2017\) luôn dương
B=\(-9x^2+12x-15\)luôn âm.
Có A=\(\frac{x+3}{x-11}+2017=\frac{x-11+14}{x-11}+2017=1+\frac{14}{x-11}+2017\)
\(=2018+\frac{14}{x-11}\)
Vì GTNN của \(\frac{14}{x-11}\)là -14 nên GTNN của A là 2018-14=2004, là số dương
Vậy A luôn dương
B=-9x2+12x-15
=>-B=9x2-12x+15
-B=(3x)2-2.2.3x+22+11
-B=(3x-2)2+11
Vì (3x-2)2\(\ge0\)nên -B luôn dương
Vậy B luôn âm
Bài 6.CMR các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) – 9x^2 + 12x – 15
b) –2x^2+4x-9
c) xy-x^ 2 -y 2 -1
d) 17- x^ 2 - 5y^ 2 + 2xy -12y
a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)
b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)
c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)
chứng minh biểu thức sau luôn có giá trị âm với mọi giá trị cảu biến
a) M= -9x^3+12x-15
b) N= -5-(x-1).(x+2)
Bài 1: Chứng minh các biểu thức sau luôn dương với mọi x:
a) 9x2 - 6x + 11
b) 3x2 - 12x + 81
c) 5x2 - 5x + 4
d) 2x2 - 2x + 9
a) \(9x^2-6x+11=\left(3x\right)^2-2.3x+1+10=\left(3x-1\right)^2+10>0\forall x\)
b) \(3x^2-12x+81=3.\left(x^2-4x+9\right)=3.\left(x-2\right)^2+15>0\forall x\)
c) \(5x^2-5x+4=5.\left(x^2-x+\dfrac{4}{5}\right)=5.\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{20}\right)=5.\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall x\)
d) \(2x^2-2x+9=2.\left(x^2-x+\dfrac{9}{2}\right)=2.\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}>0\forall x\)
a) = (3x-1)^2+10
Do (3x-1)^2>=0 với mọi x
--> (3x-1)^2+10>0 với mọi x
a) \(9x^2-6x+11=\left(3x-1\right)^2+10\ge10>0\)
b) \(3x^2-12x+81=3\left(x-2\right)^2+69\ge69>0\)
c) \(5x^2-5x+4=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
d) \(2x^2-2x+9=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}\ge\dfrac{17}{2}>0\)