(x+1)mũ 2=x+1
Bài 1: Thực hiện phép tính
a) 2(x-1) mũ 2 - 4(3+x) mũ 2 + 2x(x-5)
b) 2(2x+5) mũ 2 - 3(4x+1)(1-4x)
c) (x-1) mũ 3 - x(x-3) mũ 2 + 1
d) (x+2) mũ 3 - x mũ 2 nhân (x+6)
e) (x-2)(x+2) - (x+1) mũ 3 - 2x(x-1) mũ 2
f) (a+b-c) mũ 2 - (b-c) mũ 2 - 2a(b-c)
a) 2( x - 1 )2 - 4( 3 + x )2 + 2x( x - 5 )
= 2( x2 - 2x + 1 ) - 4( 9 + 6x + x2 ) + 2x2 - 10x
= 2x2 - 4x + 2 - 36 - 24x - 4x2 + 2x2 - 10x
= ( 2x2 - 4x2 + 2x2 ) + ( -4x - 24x - 10x ) + ( 2 - 36 )
= -38x - 34
b) 2( 2x + 5 )2 - 3( 4x + 1 )( 1 - 4x )
= 2( 4x2 + 20x + 25 ) + 3( 4x + 1 )( 4x - 1 )
= 8x2 + 40x + 50 + 3( 16x2 - 1 )
= 8x2 + 40x + 50 + 48x2 - 3
= 56x2 + 40x + 47
c) ( x - 1 )3 - x( x - 3 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 6x + 9 ) + 1
= x3 - 3x2 + 3x - x3 + 6x2 - 9x
= 3x2 - 6x
d) ( x + 2 )3 - x2( x + 6 )
= x3 + 6x2 + 12x + 8 - x3 - 6x2
= 12x + 8
e) ( x - 2 )( x + 2 ) - ( x + 1 )3 - 2x( x - 1 )2
= x2 - 4 - ( x3 + 3x2 + 3x + 1 ) - 2x( x2 - 2x + 1 )
= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x
= -3x3 + 2x2 - 5x - 5
f) ( a + b - c )2 - ( b - c )2 - 2a( b - c )
= [ ( a + b ) - c ]2 - ( b2 - 2bc + c2 ) - 2ab + 2ac
= [ ( a + b )2 - 2( a + b )c + c2 ] - b2 + 2bc - c2 - 2ab + 2ac
= a2 + 2ab + b2 - 2ac - 2bc + c2 - b2 + 2bc - c2 - 2ab + 2ac
= a2
a) \(2\left(x-1\right)^2-4\left(3+x\right)^2+2x\left(x-5\right)\)
Dùng hẳng đẳng thức thứ nhất + hai :
= \(2\left(x^2-2\cdot x\cdot1+1^2\right)-4\left(3^2+2\cdot3\cdot x+x^2\right)+2x^2-10x\)
= \(2\left(x^2-2x+1\right)-4\left(9+6x+x^2\right)+2x^2-10x\)
= \(2x^2-4x+2-36-24x-4x^2+2x^2-10x\)
= \(-38x-34\)
b) 2(2x + 5)2 - 3(4x + 1)(1 - 4x)
Dùng đẳng thức thứ 1 + 3
= 2[(2x)2 + 2.2x.5 + 52 ] - (-3)[(4x)2 - 12 ]
= 2(4x2 + 20x + 25) - (-3).(16x2 - 1)
= 8x2 + 40x + 50 - (3 - 48x2)
= 8x2 + 40x + 50 - 3 + 48x2
= 56x2 + 40x + 47
c) (x - 1)3 - x(x - 3)2 + 1
Dùng đẳng thức 2 + 5:
= x3 - 3.x2.1 + 3.x.12 - 13 - x(x2 - 2.x.3 + 32) + 1
= x3 - 3x2 + 3x - 1 - x3 + 6x2 - 9x + 1
= (x3 - x3) + (-3x2 + 6x2) + (3x - 9x) + (-1 + 1)
= 3x2 - 6x
d) (x + 2)3 - x2(x + 6)
= x3 + 3.x2.2 + 3.x.22 + 23 - x3 - 6x2
= x3 + 6x2 + 12x + 8 - x3 - 6x2
= (x3 - x3) + (6x2 - 6x2) + 12x + 8 = 12x + 8
e) Dùng đẳng thức thứ 3,4 và 2
= x2 - 4 - (x3 + 3.x2.1 + 3.x.12 + 13) - 2x(x2 - 2.x.1 + 12)
= x2 - 4 - (x3 + 3x2 + 3x + 1) - 2x3 + 4x2 - 2x
= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x
= (x2 - 3x2 + 4x2) + (-4 - 1) + (-x3 - 2x3) + (-3x - 2x)
= 2x2 - 5 - 3x3 - 5x
f) Đặt \(a+b-c=A\)
\(b-c=B\)
= \(A^2-B^2-2AB\)
= \(A^2-2AB+\left(-B\right)^2\)
\(=A^2-2AB+B^2\)
= (A - B)2
= (a + b - c - (b - c))2
= (a + b - c - b + c)2
= a2
Bài 2: Tìm số tự nhiên x,biết:
1, 2 mũ x = 4
2, 2 mũ x = 8
3, 2 mũ x = 16
4, 2 mũ x = 1
5, 3 mũ x = 9
6, 3 mũ x = 81
7, 3 mũ x = 27
8, 5 mũ x = 25
9, 5 mũ x = 125
10, 8 mũ x = 64
11, 3 mũ x + 1 = 3 mũ 2
12, 2 mũ 2 x + 1 = 2 mũ 7
13, 5 mũ x - 1 = 5 mũ 2
14, 5 mũ 2 x - 4 = 5 mũ 10
15, 6 x + 4 = 6 mũ 10
16, 2 mũ 2 x - 3 = 2 mũ 9
17, 7 mũ 2 x - 3 = 7 mũ 7
18, 8 mũ x - 2 = 1
19, 9 mũ x - 8 = 81
20, 10 mũ 2 x - 1 = 1000
Giúp mình với,mình đang cần gấp !!
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
Bài 3
2\(^x\) = 16
2\(^x\) = 24
\(x=4\)
Vậy \(x=4\)
bài 1: Rút gọn giá trị biểu thức:
a) x(x+y) - y(x+y) với x=(-1/2)mũ 5 : (1/2) mũ 4 và y=8 mũ 2 : (-2) mũ 5
b) (x-y) (x mũ 2 + xy + y mũ 2) -(x+y) ( x mũ 2 - y mũ 2 ) với x-y=0
c) x mũ 3 ( x mũ 2 - y mũ 2 ) + y mũ 2 ( x mũ 3 - y mũ 3 ) với x=16 mũ 5 : 8 mũ 5 : (-2)mũ 4 và |y|=1
d) x=y=0; x = y = 1; x = 1/2; y= -3/2; x= căn 4; y= căn 9
e) 5x ( 4x mũ 2 - 2x + 1) - 2x ( 10x mũ 2 - 5x-2) với x = -3 ( -5 )
g) 12- ( 2-3b ) + 35b - 9 ( b+1 ) với b= (1/5) mũ 5 : (1/4) mũ 2
f) ( x-y) ( x mũ 2 + xy + y mũ 2 ) + ( x+y ) ( x mũ 2 -xy + y mũ 2 ) với x=2 và y = 2013 mũ 2014
bài 1: Rút gọn giá trị biểu thức:
a) x(x+y) - y(x+y) với x=(-1/2)mũ 5 : (1/2) mũ 4 và y=8 mũ 2 : (-2) mũ 5
b) (x-y) (x mũ 2 + xy + y mũ 2) -(x+y) ( x mũ 2 - y mũ 2 ) với x-y=0
c) x mũ 3 ( x mũ 2 - y mũ 2 ) + y mũ 2 ( x mũ 3 - y mũ 3 ) với x=16 mũ 5 : 8 mũ 5 : (-2)mũ 4 và |y|=1
d) x=y=0; x = y = 1; x = 1/2; y= -3/2; x= căn 4; y= căn 9
e) 5x ( 4x mũ 2 - 2x + 1) - 2x ( 10x mũ 2 - 5x-2) với x = -3 ( -5 )
g) 12- ( 2-3b ) + 35b - 9 ( b+1 ) với b= (1/5) mũ 5 : (1/4) mũ 2
f) ( x-y) ( x mũ 2 + xy + y mũ 2 ) + ( x+y ) ( x mũ 2 -xy + y mũ 2 ) với x=2 và y = 2013 mũ 2014
a)<=>
A,=(x+y)(x-y)=x^2-y^2
x=(-1/2)^5:(1/2)^4=-1/2
x^2=1/4
y=8^2/(-2)^5=-2
y^2=4
A=1/4-4=-15/4
1.Rút gọn các biểu thức
a.(2x+1) mũ 2-4x(x.5)
b)(x+3)mũ 2 - (x+1)(x-1)
c)(x-5)mũ 2 - (x+2)mũ 2
d)(x+3)mũ 2 - (x-3)mũ 2
e)2x(x+1)-(x+3)mũ 2-x mũ 2
g)(x+3)mũ 2+(x+2)mũ 2-2(x+3)(x+2)
Câu a :
\(\left(2x+1\right)^2-4x\left(x-5\right)\)
\(=4x^2+4x+1-4x^2+20\)
\(=4x+19\)
Câu b :
\(\left(x+3\right)^2-\left(x+1\right)\left(x-1\right)\)
\(=x^2+6x+9-x^2-1\)
\(=6x-8\)
Câu c :
\(\left(x-5\right)^2-\left(x+2\right)^2\)
\(=\left(x-5-x-2\right)\left(x-5+x+2\right)\)
\(=-7\left(2x-3\right)\)
\(\text{b) }\left(x+3\right)^2-\left(x+1\right)\left(x-1\right)\\ =\left(x+3\right)^2-\left(x^2-1^2\right)\\ =x^2+2\cdot x\cdot3+3^2-x^2+1\\ =\left(x^2-x^2\right)+6x+\left(9+1\right)\\ =6x+10\\ \)
\(\text{c) }\left(x-5\right)^2-\left(x+2\right)^2\\ =\left(x^2-2\cdot x\cdot5+5^2\right)-\left(x^2+2\cdot x\cdot2+2^2\right)\\ =x^2-10x+25-x^2-4x-4\\ =\left(x^2-x^2\right)-\left(10x+4x\right)+\left(25-4\right)\\ =-14x+21\\ \)
\(\text{d) }\left(x+3\right)^2-\left(x-3\right)^2\\ =\left(x^2+2\cdot x\cdot3+3^2\right)-\left(x^2-2\cdot x\cdot3+3^2\right)\\ =x^2+6x+9-x^2+6x-9\\ =\left(x^2-x^2\right)+\left(6x+6x\right)+\left(9-9\right)\\ =12x\\ \)
\(\text{e) }2x\left(x+1\right)-\left(x+3\right)^2-x^2\\ =2x^2+2x-\left(x^2+2\cdot x\cdot3+3^2\right)-x^2\\ =2x^2+2x-x^2-6x-9-x^2\\ =\left(2x^2-x^2-x^2\right)+\left(2x-6x\right)-9\\ =-4x-9\\ \)
\(\text{g) }\left(x+3\right)^2+\left(x+2\right)^2-2\left(x+3\right)\left(x+2\right)\\ =\left[\left(x+3\right)-\left(x+2\right)\right]^2\\ =\left(x+3-x-2\right)^2\\ =1^2\\ =1\\ \)
Bài 2: Tìm x, biết
a) (x+3) mũ 2 - (x-4)(x+8) = 1
b) (x+3)(x mũ 2 - 3x + 9) -x(x-2)(x+2) = 15
c) (x-2) mũ 2 - (x+3) mũ 2 - 4(x+1) = 5
d) (2x-3)(2x+3) - (x-1) mũ 2 - 3x(x-5) = -44
e) (x-2) mũ 3 - (x-3)(x mũ 2 + 3x + 9) + 6(x+1) mũ 2 = 49
f) 5x(x-3) mũ 2 - 5(x-1) mũ 3 + 15(x+2)(x-2) = 5
g) (x+3) mũ 3 - x(3x+1) mũ 2 + (2x+1)(4x mũ 2 - 2x + 1) - 3x mũ 2 = 42
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
f) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60=5\)
\(\Leftrightarrow30x=60\)
\(\Rightarrow x=2\)
g) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=42\)
\(\Leftrightarrow26x=14\)
\(\Rightarrow x=\frac{7}{13}\)
2(x-3)+5x(x-1)=5x mũ 2
(2x+1)(x -1)=0
3x-15=2x(x-5)
10× +3 phần 12=1 6+8x phần 9
(2x mũ 2+1)(4x-3)=(2x mũ 2+1)(x-12)
(x+7)(3x-1)=49-x mũ 2
2x(x+2)mũ 2 -8x mũ 2=2(x-2)(x mũ 2+2x+4)
(2x+5)mũ 2=(x+2)mũ 2
2(3x+1)+1 phần 4-5=2(3x-1) phần 5 3x+2 phần 10
3-7x phần 1+x=1 phần 2
X+7 phần x+4- 7 phần x-4=-56 phần x mũ 2 -16
x-3 phần x-2+x -2 phần x-4 =-1
1 phần x-1+2x mũ 2 -5 phần x mũ 3-1=4 phần x mũ 2+x+1
x-1 phần x+2-x phần x-2=5x -2 phần 4-x mũ 2
x-5=3x-2
Bài 1: Tìm x thuộc N, biết
a) x=x mũ 5
b)x mũ 4= x mũ 2
c)(x-1)mũ 3 = x-1
Bài 2: Tìm x
(2x -1) mũ 3= 1 mũ 3+ 2 mũ 3+3 mũ 3+ 4 mũ 3+ 5 mũ 3
Bài 1
a) \(x=x^5\)
\(x^5-x=0\)
\(x\left(x^4-1\right)=0\)
\(x=0\) hoặc \(x^4-1=0\)
* \(x^4-1=0\)
\(x^4=1\)
\(x=1\)
Vậy x = 0; x = 1
b) \(x^4=x^2\)
\(x^4-x^2=0\)
\(x^2\left(x^2-1\right)=0\)
\(x^2=0\) hoặc \(x^2-1=0\)
*) \(x^2=0\)
\(x=0\)
*) \(x^2-1=0\)
\(x^2=1\)
\(x=1\)
Vậy \(x=0\); \(x=1\)
c) \(\left(x-1\right)^3=x-1\)
\(\left(x-1\right)^3-\left(x-1\right)=0\)
\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)
\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)
*) \(x-1=0\)
\(x=1\)
*) \(\left(x-1\right)^2-1=0\)
\(\left(x-1\right)^2=1\)
\(x-1=1\) hoặc \(x-1=-1\)
**) \(x-1=1\)
\(x=2\)
**) \(x-1=-1\)
\(x=0\)
Vậy \(x=0\); \(x=1\); \(x=2\)
1. (2 mũ x + 1)mũ 2 = 25
2. (x + 6) . (5 mũ x - 1) = 0
3. 2 . 3 mũ x + 3 mũ 2 + x = 891
4. (x - 3) mũ 2023 = x - 3
cứu em với ạ =(
`(2^x+1)^2 =25`
`=> (2^x+1)^2 = (+-5)^2`
\(\Rightarrow\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)
\(\left(x+6\right)\left(5^x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+6=0\\5^x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\5^x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
\(\left(x-3\right)^{2023}=x-3\)
\(\Rightarrow\left(x-3\right)^{2023}-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^{2022}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{2022}-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
`#3107.101107`
1.
`(2^x + 1)^2 = 25`
`=> (2^x + 1)^2 = (+-5)^2`
`=>`\(\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2^x=4\\2^x=-6\left(\text{vô lý}\right)\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)
Vậy, `x =2.`
2.
`(x + 6)(5x - 1) = 0`
`=>`\(\left[{}\begin{matrix}x+6=0\\5x-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-6\\5x=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-6\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy, `x \in {-6; 1/5}`
3.
`2*3^(x + 3) + 3^(2 + x) = 891`
`=> 2* 3^x * 3^3 + 3^2 * 3^x = 891`
`=> 54*3^x + 9*3^x = 891`
`=> 3^x * (54 + 9) = 891`
`=> 3^x * 63 = 891`
`=> 3^x = 891 \div 63`
`=> 3^x = 891/63`
Bạn xem lại đề.
4.
`(x - 3)^2023 = x - 3`
`=> (x - 3)^2023 - (x - 3) = 0`
`=> (x - 3) * [ (x - 3)^2022 - 1] = 0`
`=>`\(\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{2022}-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=\left(\pm1\right)^{2022}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x-3=1\\x-3=-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)
Vậy, `x \in {2; 3; 4}.`
x mũ 2 + x mũ 2 . y - y - 1
x mũ 2 + y mũ 2 - 2xy - 25
( 2x - 1 ) ( x mũ 2 + 2x - 1) - ( 1 - 2x ) (x - 3)
a mũ 2 + x mũ 2 -16 + 2ax
1) x2 + x2y - y - 1
= x2( 1 + y ) - ( 1 + y )
= ( 1 + y )( x2 - 1 )
= ( 1 + y )( x - 1 )( x + 1 )
2) x2 + y2 - 2xy - 25
= ( x2 - 2xy + y2 ) - 25
= ( x - y )2 - 52
= ( x - y - 5 )( x - y + 5 )
3) ( 2x - 1 )( x2 + 2x - 1 ) - ( 1 - 2x )( x - 3 )
= ( 2x - 1 )( x2 + 2x - 1 ) + ( 2x - 1 )( x - 3 )
= ( 2x - 1 )( x2 + 2x - 1 + x - 3 )
= ( 2x - 1 )( x2 + 3x - 4 )
= ( 2x - 1 )( x2 - x + 4x - 4 )
= ( 2x - 1 )[ x( x - 1 ) + 4( x - 1 ) ]
= ( 2x - 1 )( x - 1 )( x + 4 )
4) a2 + x2 - 16 + 2ax
= ( a2 + 2ax + x2 ) - 16
= ( a + x )2 - 42
= ( a + x - 4 )( a + x + 4 )