Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bùi mai lâm nhi
Xem chi tiết
Nguyễn Huy Tú
13 tháng 3 2022 lúc 12:25

a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x-11-13-3
x204-2

 

b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

2x-11-12-24-4
x10loạiloạiloạiloại

 

c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

x-11-12-25-510-10
x203-16-411-9

 

d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x+31-13-3
x-2-40-6

 

Big City Boy
Xem chi tiết
Đoan Thùy
Xem chi tiết
Vui lòng để tên hiển thị
10 tháng 5 2022 lúc 11:11

a, `2/(x-1) in ZZ`.

`=> 2 vdots x - 1`

`=> x-1 in Ư(2)`

`=> x - 1 in {+-1, +-2}`.

`=> x - 1 = 1 => x = 2`.

`=> x - 1 = -1 => x = 0`.

`=> x - 1 = -2 => x = -1`.

`=> x - 1 = 2 => x = 3`.

Vậy `x = 2, 0, - 1, 3`.

b, `4/(2x-1) in ZZ`

`=> 4 vdots 2x - 1`.

`=> 2x - 1 in Ư(4)`

Vì `2x vdots 2 => 2x - 1 cancel vdots 2`

`=> 2x - 1 in {+-1}`

`=> 2x - 1 = -1 => x = 0`.

`=> 2x - 1 = 1 => x = 1`

Vậy `x = 0,1`.

c, `(x+3)/(x-1) in ZZ`.

`=> x + 3 vdots x - 1`

`=> x - 1 + 4 vdots x - 1`.

`=> 4 vdots x-1`

`=> x -1 in Ư(4)`

`=> x - 1 in{+-1, +-2, +-4}`

`x - 1  = 1 => x = 2`.

`x - 1 = -1 => x = 0`.

`x - 1 = 2 =>x = 3`.

`x - 1 = -2 => x = -1`.

`x - 1 = 4 => x = 5`.

`x - 1 = -4 => x = -3`.

Vậy `x = 2, 0 , +-1, 5, -3`.

Nguyễn Lê Phước Thịnh
20 tháng 12 2020 lúc 20:15

ĐKXĐ: \(x\ne1\)

Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)

\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)

\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)

\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)

\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)

Để B nguyên thì \(3⋮\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)

mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ

nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)

\(\Leftrightarrow x-1\in\left\{1;9\right\}\)

hay \(x\in\left\{2;10\right\}\) (nhận)

Vậy: \(x\in\left\{2;10\right\}\)

Big City Boy
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:39

a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:41

b)

ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)

Ta có: P=AB

\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)

\(=\dfrac{3x}{x+1}\)

Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)

\(\Leftrightarrow9\left(x+1\right)=6x\)

\(\Leftrightarrow9x-6x=-9\)

\(\Leftrightarrow3x=-9\)

hay x=-3(loại)

Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)

Đỗ Tuấn Anh
Xem chi tiết
Kiều Vũ Linh
27 tháng 10 2023 lúc 8:15

a) 2ˣ + 2ˣ⁺³ = 72

2ˣ.(1 + 2³) = 72

2ˣ.9 = 72

2ˣ = 72 : 9

2ˣ = 8

2ˣ = 2³

x = 3

b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)

Ta có:

x - 2 = x + 1 - 3

Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ x ∈ {-4; -2; 0; 2}

Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên

c) P = |2x + 7| + 2/5

Ta có:

|2x + 7| ≥ 0 với mọi x ∈ R

|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R

Vậy GTNN của P là 2/5 khi x = -7/2

Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Huy Trường Lưu
Xem chi tiết
Nguyễn Đức Trí
21 tháng 8 2023 lúc 21:19

a) \(P=\dfrac{2x+5}{x+3}\inℤ\left(x\inℤ;x\ne-3\right)\)

\(\Rightarrow2x+5⋮x+3\)

\(\Rightarrow2x+5-2\left(x+3\right)⋮x+3\)

\(\Rightarrow2x+5-2x-6⋮x+3\)

\(\Rightarrow-1⋮x+3\)

\(\Rightarrow x+3\in\left\{-1;1\right\}\)

\(\Rightarrow x\in\left\{-4;-2\right\}\)

b) \(P=\dfrac{3x+4}{x+1}\inℤ\left(x\inℤ;x\ne-1\right)\)

\(\Rightarrow3x+4⋮x+1\)

\(\Rightarrow3x+4-3\left(x+1\right)⋮x+1\)

\(\Rightarrow3x+4-3x-3⋮x+1\)

\(\Rightarrow1⋮x+1\)

\(\Rightarrow x+1\in\left\{-1;1\right\}\)

\(\Rightarrow x\in\left\{-2;0\right\}\)

c) \(P=\dfrac{4x-1}{2x+3}\inℤ\left(x\inℤ;x\ne-\dfrac{3}{2}\right)\)

\(\Rightarrow4x-1⋮2x+3\)

\(\Rightarrow4x-1-2\left(2x+3\right)⋮2x+3\)

\(\Rightarrow4x-1-4x-6⋮2x+3\)

\(\Rightarrow-7⋮2x+3\)

\(\Rightarrow2x+3\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow x\in\left\{-2;-1;-5;2\right\}\)

Minh Trang Trần
21 tháng 8 2023 lúc 21:29

a) P=\(\dfrac{2x+5}{x+3}=\dfrac{2\left(x+3\right)-2}{x+3}=\dfrac{2\left(x+3\right)}{x+3}-\dfrac{2}{x+3}=2-\dfrac{2}{x+3}\)

để \(P\inℤ\) thì \(\dfrac{2}{x+3}\inℤ\) hay 2 ⋮ (x-3) ⇒x+3 ϵ Ư2= (2,-2,1,-1)

ta có bảng sau:

x+3 2 -2 1 -1
x -1 -5 -2 -4

Vậy x \(\in-1,-2,-5,-4\)

 

 

 

 

 

Hà Trí Kiên
Xem chi tiết

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3