Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 1:07

a) \(\overrightarrow a .\overrightarrow b  = 3.4.\cos {30^o} = 12.\frac{{\sqrt 3 }}{2} = 6\sqrt 3 \)

b) \(\overrightarrow a .\overrightarrow b  = 5.6.\cos {120^o} = 30.\left( { - \frac{1}{2}} \right) =  - 15\)

c) \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng nên \((\overrightarrow a ,\overrightarrow b ) = {0^o}\)

\(\overrightarrow a .\overrightarrow b  = 2.3.\cos {0^o} = 6.1 = 6\)

d) \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng nên \((\overrightarrow a ,\overrightarrow b ) = {180^o}\)

\(\overrightarrow a .\overrightarrow b  = 2.3.\cos {180^o} = 6.( - 1) =  - 6\)

Sách Giáo Khoa
Xem chi tiết
Hai Binh
27 tháng 4 2017 lúc 17:32

Hỏi đáp Toán

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:49

Tính \(\overrightarrow{a}.\overrightarrow{b}\) hả bạn?

\(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|cos\left(\overrightarrow{a};\overrightarrow{b}\right)=2.\sqrt{3}.cos30^0=3\)

Nguyễn Việt Lâm
16 tháng 12 2020 lúc 10:57

Đặt \(A=\left|\overrightarrow{a}+\overrightarrow{b}\right|\Rightarrow A^2=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a};\overrightarrow{b}\right)\)

\(=2^2+3+2.2.\sqrt{3}.cos30^0=13\)

\(\Rightarrow\left|\overrightarrow{a}+\overrightarrow{b}\right|=\sqrt{13}\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
19 tháng 5 2017 lúc 14:22

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2-2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|^2+\overrightarrow{a}\overrightarrow{b}-\overrightarrow{a}\overrightarrow{b}+\left|\overrightarrow{b}\right|^2\)\(=\left|\overrightarrow{a}\right|^2-\left|\overrightarrow{b}\right|^2\).

Sách Giáo Khoa
Xem chi tiết
Anh Triêt
30 tháng 3 2017 lúc 15:04

a) cos(; ) = = 0

=> (; ) = 900

b) cos(; ) = =

=> (; ) = 450

c) cos(; ) = =

=> (; ) = 1500

Đăng những câu khác đi em mỏi tay rồi

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 16:50

a) \(\overrightarrow{a}.\overrightarrow{b}=6\left(1-c\right)\)

b) \(\overrightarrow{a}.\overrightarrow{b}=-21\)

c) \(\overrightarrow{a}.\overrightarrow{b}=0\)

Ngô Thành Chung
Xem chi tiết
Hồng Phúc
31 tháng 1 2021 lúc 21:47

Từ giả thiết ta có: 

\(\left(\overrightarrow{a}+2\overrightarrow{b}\right)\left(5\overrightarrow{a}-4\overrightarrow{b}\right)=0\)

\(\Leftrightarrow\overrightarrow{a}.5\overrightarrow{a}-\overrightarrow{a}.4\overrightarrow{b}+2\overrightarrow{b}.5\overrightarrow{a}-2\overrightarrow{b}.4\overrightarrow{b}=0\)

\(\Leftrightarrow5a^2+6\overrightarrow{a}.\overrightarrow{b}-8b^2=0\)

\(\Leftrightarrow\left(5\overrightarrow{a}-4\overrightarrow{b}\right)\left(\overrightarrow{a}+2\overrightarrow{b}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\\\overrightarrow{a}=-2\overrightarrow{b}\end{matrix}\right.\)

Nếu \(\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=0^o\)

Nếu \(\overrightarrow{a}=-2\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=180^o\)

Hồng Phúc
31 tháng 1 2021 lúc 23:19

Làm lại đây nha, nãy buồn ngủ nên làm hơi ngu.

Từ giả thiết ta có:

\(\left(\overrightarrow{a}+2\overrightarrow{b}\right)\left(5\overrightarrow{a}-4\overrightarrow{b}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\\\overrightarrow{a}=-2\overrightarrow{b}\end{matrix}\right.\)

Nếu \(\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=0^o\)

Nếu \(\overrightarrow{a}=-2\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=180^o\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:51

a) Tọa độ vectơ \(\overrightarrow u  = \left( {2.\left( { - 1} \right) + 3 - 3.2;2.2 + 1 - 3.\left( { - 3} \right)} \right) = \left( { - 5;14} \right)\)

b) Do \(\overrightarrow x  + 2\overrightarrow b  = \overrightarrow a  + \overrightarrow c  \Leftrightarrow \overrightarrow x  = \overrightarrow a  + \overrightarrow c  - 2\overrightarrow b  = \left( { - 1 + 2 - 2.3;2 + \left( { - 3} \right) - 2.1} \right) = \left( { - 5; - 3} \right)\)

Vậy \(\overrightarrow x  = \left( { - 5; - 3} \right)\)

Thầy Cao Đô
Xem chi tiết

\(\left|\overrightarrow{a}-2\cdot\overrightarrow{b}\right|=\sqrt{15}\)

=>\(\left(\overrightarrow{a}-2\cdot\overrightarrow{b}\right)\left(\overrightarrow{a}-2\cdot\overrightarrow{b}\right)=15\)

=>\(\overrightarrow{a}\cdot\overrightarrow{a}-4\cdot\overrightarrow{a}\cdot\overrightarrow{b}+4\cdot\overrightarrow{b}\cdot\overrightarrow{b}=15\)

=>\(\left(\left|\overrightarrow{a}\right|\right)^2-4\cdot\overrightarrow{a}\cdot\overrightarrow{b}+4\cdot\left(\overrightarrow{b}\right)^2=15\)

=>\(1^2+4\cdot2^2-4\cdot\overrightarrow{a}\cdot\overrightarrow{b}=15\)

=>\(4\cdot\overrightarrow{a}\cdot\overrightarrow{b}=1+16-15=2\)

=>\(\overrightarrow{a}\cdot\overrightarrow{b}=\frac12\)

b: \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(2k\cdot\overrightarrow{a}-\overrightarrow{b}\right)\)

\(=2k\cdot\overrightarrow{a}\cdot\overrightarrow{a}-\overrightarrow{a}\cdot\overrightarrow{b}+2k\cdot\overrightarrow{a}\cdot\overrightarrow{b}-\overrightarrow{b}\cdot\overrightarrow{b}\)

\(=2k\cdot\left(\left|\overrightarrow{a}\right|\right)^2+\overrightarrow{a}\cdot\overrightarrow{b}\left(2k-1\right)-\left(\overrightarrow{b}\right)^2\)

\(=2k\cdot1^2+\left(2k-1\right)\cdot\frac12-2^2=2k+k-\frac12-4=3k-\frac92\)

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left(\left|\overrightarrow{a}\right|\right)^2+2\cdot\overrightarrow{a}\cdot\overrightarrow{b}+\left(\left|\overrightarrow{b}\right|\right)^2\)

\(=1^2+2^2+2\cdot\frac12=5+1=6\)

=>\(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\sqrt6\)

\(\left(2k\cdot\overrightarrow{a}-\overrightarrow{b}\right)^2=4k^2\cdot\left(\left|\overrightarrow{a}\right|\right)^2-2\cdot2k\cdot\overrightarrow{a}\cdot\overrightarrow{b}+\left(\overrightarrow{b}\right)^2\)

\(=4k^2\cdot1-4k\cdot\frac12+4=4k^2-2k+4\)

=>\(\left|2k\cdot\overrightarrow{a}-\overrightarrow{b}\right|=\sqrt{4k^2-2k+4}\)

\(cos\left(\left(\overrightarrow{a}+\overrightarrow{b}\right);\left(2k\cdot\overrightarrow{a}-\overrightarrow{b}\right)\right)=cos60^0=\frac12\)

=>\(\frac{3k-4,5}{\sqrt{6\left(4k^2-2k+4\right)}}=\frac12\)

=>\(\sqrt{\frac{\left(3k-4,5\right)^2}{6\left(4k^2-2k+4\right)}}=\frac12\)

=>\(\frac{\left(3k-4,5\right)^2}{6\left(4k^2-2k+4\right)}=\frac14\)

=>\(6\left(4k^2-2k+4\right)=4\left(3k-4,5\right)^2\)

=>\(4\left(9k^2-27k+20,25\right)=6\left(4k^2-2k+4\right)\)

=>\(36k^2-108k+81=24k^2-12k+24\)

=>\(12k^2-96k+57=0\)

=>\(4k^2-32k+19=0\)

=>\(k=\frac{8\pm3\sqrt5}{2}\)

Nguyễn Thảo Hân
Xem chi tiết
Trần Quốc Lộc
5 tháng 8 2019 lúc 10:38

\(\text{a) }\left|2\overrightarrow{MA}+3\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}-2\overrightarrow{MC}\right|\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2=\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}\right)^2-\left(3\overrightarrow{MB}-2\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(2\overrightarrow{MA}+3\overrightarrow{MB}-3\overrightarrow{MB}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MA}+3\overrightarrow{MB}+3\overrightarrow{MB}-2\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MC}\right)\left[2\left(\overrightarrow{MA}-\overrightarrow{MC}\right)+6\overrightarrow{MB}\right]=0\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)\left(\overrightarrow{CA}+3\overrightarrow{MB}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MC}=0\\\overrightarrow{CA}+3\overrightarrow{MB}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=-\overrightarrow{MC}\\\overrightarrow{CA}=-3\overrightarrow{MB}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}M;A;C\text{ thẳng hàng };M\text{ nằm giữa }A;C\\MA=MC\end{matrix}\right.\\\left\{{}\begin{matrix}CA//MB\\CA=3MB\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}M\text{ là trung điểm }AC\\CA//MB;CA=3MB\end{matrix}\right.\)

Vậy......

Trần Quốc Lộc
5 tháng 8 2019 lúc 10:45

\(b\text{) }\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2=\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2-\left(2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}-2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\left(4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}\right)\cdot6\overrightarrow{MA}=0\\ \Rightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=0\\\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\equiv A\\M\text{ là trọng tâm }\Delta ABC\end{matrix}\right.\)Vậy...........