Chương II: TÍCH VÔ HƯỚNG CỦA HAI VÉC TƠ VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Thành Chung

Tính \(\left(\overrightarrow{a};\overrightarrow{b}\right)\) biết \(\left(\overrightarrow{a}+2\overrightarrow{b}\right)\) ⊥ \(\left(5\overrightarrow{a}-4\overrightarrow{b}\right)\)

Hồng Phúc
31 tháng 1 2021 lúc 21:47

Từ giả thiết ta có: 

\(\left(\overrightarrow{a}+2\overrightarrow{b}\right)\left(5\overrightarrow{a}-4\overrightarrow{b}\right)=0\)

\(\Leftrightarrow\overrightarrow{a}.5\overrightarrow{a}-\overrightarrow{a}.4\overrightarrow{b}+2\overrightarrow{b}.5\overrightarrow{a}-2\overrightarrow{b}.4\overrightarrow{b}=0\)

\(\Leftrightarrow5a^2+6\overrightarrow{a}.\overrightarrow{b}-8b^2=0\)

\(\Leftrightarrow\left(5\overrightarrow{a}-4\overrightarrow{b}\right)\left(\overrightarrow{a}+2\overrightarrow{b}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\\\overrightarrow{a}=-2\overrightarrow{b}\end{matrix}\right.\)

Nếu \(\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=0^o\)

Nếu \(\overrightarrow{a}=-2\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=180^o\)

Hồng Phúc
31 tháng 1 2021 lúc 23:19

Làm lại đây nha, nãy buồn ngủ nên làm hơi ngu.

Từ giả thiết ta có:

\(\left(\overrightarrow{a}+2\overrightarrow{b}\right)\left(5\overrightarrow{a}-4\overrightarrow{b}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\\\overrightarrow{a}=-2\overrightarrow{b}\end{matrix}\right.\)

Nếu \(\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=0^o\)

Nếu \(\overrightarrow{a}=-2\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=180^o\)


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
hello hello
Xem chi tiết
Got many jams
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
hello hello
Xem chi tiết
hello hello
Xem chi tiết
Hoàng Mai Lê
Xem chi tiết