Giả thiết => cos \(\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{1}{2}\)
⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=60^0\)
Giả thiết => cos \(\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{1}{2}\)
⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=60^0\)
Cho hai vecto \(\overrightarrow{a};\overrightarrow{b}\) khác vecto 0. \(\left|\overrightarrow{a}\right|=4;\left|\overrightarrow{b}\right|=3;\left|\overrightarrow{a}-\overrightarrow{b}\right|=4\). Gọi \(\alpha\) là góc giữa hai vecto a vầ b. Chọn phát biểu đúng
A. \(\alpha\)= 60 độ B. \(\alpha\)= 30 độ C. \(\cos\alpha=\dfrac{1}{3}\) D\(\cos\alpha=\dfrac{3}{8}\)
Cho các vecto \(\left|\overrightarrow{a}\right|=x,\left|\overrightarrow{b}\right|=y,\left|\overrightarrow{z}\right|=c\) và vecto a+b+3c=0. Tính \(A=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\)
1. cho tam giác ABC đều , G là trọng tâm . Xác định góc giữa các vecto sau : \(\left(\overrightarrow{AB},\overrightarrow{AC}\right)\) , \(\left(\overrightarrow{AB},\overrightarrow{CA}\right)\) , \(\left(\overrightarrow{BA},\overrightarrow{AG}\right)\) , \(\left(\overrightarrow{GA},\overrightarrow{GC}\right)\) , \(\left(\overrightarrow{BG},\overrightarrow{AC}\right)\)
Tính \(\left(\overrightarrow{a};\overrightarrow{b}\right)\) biết \(\left(\overrightarrow{a}+2\overrightarrow{b}\right)\) ⊥ \(\left(5\overrightarrow{a}-4\overrightarrow{b}\right)\)
1 . \(\overrightarrow{a}\left(-2,3\right)\) , \(\overrightarrow{b}\left(4,1\right)\) . Tính \(\cos\left(\overrightarrow{a},\overrightarrow{b}\right)\) , \(\cos\left(\overrightarrow{a},\overrightarrow{i}\right)\) , \(\cos\left(\overrightarrow{a}+\overrightarrow{b},\overrightarrow{a}-\overrightarrow{b}\right)\)
Cho hình vuông ABCD cạnh a . Tính giá trị các biểu thức sau:
a) \(\overrightarrow{AB}.\overrightarrow{AC}\)
b)\(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)
c)\(\overrightarrow{AB}.\overrightarrow{BD}\)
d) \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)\)
e) \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)
Cho tam giác ABC. Chứng minh rằng:
a) \(S_{\Delta ABC}=\dfrac{1}{2}\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
b) \(b+c=2a\Leftrightarrow\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
c) Góc A vuông \(\Leftrightarrow m_b^2+m_c^2=5m_a^2\)